skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Overcoming the rise in local deposit resistance during electrophoretic deposition via suspension replenishing
Nanomaterials have unique properties, functionalities, and excellent performance, and as a result have gained significant interest across disciplines and industries. However, currently, there is a lack of techniques that can assemble as-synthesized nanomaterials in a scalable manner. Electrophoretic deposition (EPD) is a promising method for the scalable assembly of colloidally stable nanomaterials into thick films and arrays. In EPD, an electric field is used to assemble charged colloidal particles onto an oppositely charged substrate. However, in constant voltage EPD the deposition rate decreases with increasing deposition time, which has been attributed in part to the fact that the electric field in the suspension decreases with time. This decreasing electric field has been attributed to two probable causes, (i) increased resistance of the particle film and/or (ii) the growth of an ion-depletion region at the substrate. Here, to increase EPD yield and scalability we sought to distinguish between these two effects and found that the growth of the ion-depletion region plays the most significant role in the increase of the deposit resistance. Here, we also demonstrate a method to maintain constant deposit resistance in EPD by periodic replenishing of suspension, thereby improving EPD’s scalability.  more » « less
Award ID(s):
1727930
PAR ID:
10432342
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Chemistry
Volume:
10
ISSN:
2296-2646
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Incorporating nanoparticles into devices for a wide range of applications often requires the formation of thick films, which is particularly necessary for improving magnetic power storage, microwave properties, and sensor performance. One approach to assembling nanoparticles into films is the use of electrophoretic deposition (EPD). This work seeks to develop methods to increase film thickness and stability in EPD by increasing film-substrate interactions via functionalizing conductive substrates with various chelating agents. Here, we deposited iron oxide nanoparticles onto conductive substrates functionalized with three chelating agents with different functional moieties and differing chelating strengths. We show that increasing chelating strength can increase film-substrate interactions, resulting in thicker films when compared to traditional EPD. Results will also be presented on how the chelating strength relates to film formation as a function of deposition conditions. Yield for EPD is influenced by deposition conditions including applied electric field, particle concentration, and deposition time. This work shows that the functionalization of substrates with chelating agents that coordinate strongly with nanoparticles (phosphonic acid and dopamine) overcome parameters that traditionally hinder the deposition of thicker and more stable films, such as applied electric field and high particle concentration. We show that functionalizing substrates with chelating agents is a promising method to fabricate thick, stable films of nanoparticles deposited via EPD over a larger processing space by increasing film-substrate interactions. 
    more » « less
  2. Ion concentration polarization (ICP) accomplishes preconcentration for bioanalysis by localized depletion of electrolyte ions, thereby generating a gradient in electric field strength that facilitates electrokinetic focusing of charged analytes by their electromigration against opposing fluid flow. Such ICP focusing has been shown to accomplish up to a million-fold enrichment of nucleic acids and proteins in single-stage preconcentrators. However, the rate at which the sample volume is swept is limited, requiring several hours to achieve these high enrichment factors. This limitation is caused by two factors. First, an ion depleted zone (IDZ) formed at a planar membrane or electrode may not extend across the full channel cross section under the flow rate employed for focusing, thereby allowing the analyte to “leak” past the IDZ. Second, within the IDZ, large fluid vortices lead to mixing, which decreases the efficiency of analyte enrichment and worsens with increased channel dimensions. Here, we address these challenges with faradaic ICP (fICP) at a three-dimensional (3D) electrode comprising metallic microbeads. This 3D-electrode distributes the IDZ, and therefore, the electric field gradient utilized for counter-flow focusing across the full height of the fluidic channel, and its large area, microstructured surface supports smaller vortices. An additional bed of insulating microbeads restricts flow patterns and supplies a large area for surface conduction of ions through the IDZ. Finally, the resistance of this secondary bed enhances focusing by locally strengthening sequestering forces. This easy-to-build platform lays a foundation for the integration of enrichment with user-defined packed bed and electrode materials. 
    more » « less
  3. Abstract Mesoscale high‐latitude electric fields are known to deposit energy into the ionospheric and thermospheric system, yet the energy deposition process is not fully understood. We conduct a case study to quantify the energy deposition from mesoscale high‐latitude electric fields to the thermosphere. For the investigation, we obtain the high‐latitude electric field with mesoscale variabilities from Poker Flat Incoherent Scatter Radar measurements during a moderate geomagnetic storm, providing the driver for the Global Ionosphere and Thermosphere Model (GITM) via the High‐latitude Input for Mesoscale Electrodynamics framework. The HIME‐GITM simulation is compared with GITM simulations driven by the large‐scale electric field from the Weimer model. Our modeling results indicate that the mesoscale electric field modifies the thermospheric energy budget primarily through enhancing the Joule heating. Specifically, in the local high‐latitude region of interest, the mesoscale electric field enhances the Joule heating by up to five times. The resulting neutral temperature enhancement can reach up to 50 K above 200 km altitude. Significant increase in the neutral density above 250 km altitude and in the neutral wind speed are found in the local region as well, lagging a few minutes after the Joule heating enhancement. We demonstrate that the energy deposited by the mesoscale electric field transfers primarily to the gravitational potential energy in the thermosphere. 
    more » « less
  4. Cold spray additive manufacturing (CSAM) has gained significant attention for its rapid solid deposition capabilities. However, the presence of defects such as pores and voids limits its performance, particularly in electrochemical environments. In this study, a novel post-surface treatment, plasma electrolytic oxidation (PEO), was applied and investigated as a feasible solution to overcome these defects. Results demonstrated a successful PEO deposition on cold-sprayed 316L stainless steel (SS) due to the rapid formation and discharge of aluminate electrolytes along the surface. However, due to the severely strained and highly crystalline surface, the electric field that allows for the deposition of Al(OH)42 anions was reduced. As consequence, an uneven and rough deposition took place. Nonetheless, a successful Al2O3 film of 12.30 lm thickness was formed. Experimental tests were further conducted in simulated aqueous and biologicalbased solutions to test the electrochemical resistance of the deposit. Results reveal a noticeable enhancement in corrosion resistance for both solutions. This enhancement can be attributed to the ‘‘postponing’’ and ‘‘blocking’’ effect enabled by the Al2O3 film, which prevented the electrolyte solution from penetrating the CS surface. Collectively, these findings suggest that PEO is indeed a promising technique to mitigate the chemical degradation of CSAM’d 316L SS. 
    more » « less
  5. Depositing carbon nanotubes (CNTs) into carbon fiber reinforced polymer composites (CFRPs) is challenging because of the need for complicated lab-scale processes and toxic chemical dispersants that makes conventional means of processing less compatible with existing industrial procedures for large-scale applications. In this work, a scalable supercritical CO2-assisted atomization technique is used to effectively deposit hybrid CNTs in CFRPs allowing them to boost their functionality and tailor the microstructure. Cellulose nanocrystals (CNCs) are utilized to create hybrid nanostructures with CNTs (CNC bonded CNT) that enables stabilization of CNTs in nontoxic media, i.e., water, and this promotes the scalability of the process. According to Zeta potential values, CNCs successfully stabilize CNTs in water suspension. Scanning electron microscopy (SEM) micrographs show hybrid CNC bonded CNTs are homogeneously dispersed on the carbon fiber surface. According to the in-situ bending test under the optical microscope, crack propagation is hindered by engineered hybrid CNT nanostructures in the modified CFRP whereas neat CFRP exhibits low crack growth resistance due to the uninterrupted crack propagation in the continuous epoxy matrix. Our results imply that this strategy probes the importance of new controlled manufacturing of hybrid nanostructures through evaporation‑induced self‑assembly of nanocolloidal droplets, and allows for tailoring of the desired properties of nanostructured composites. 
    more » « less