skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adapting hippocampus multi-scale place field distributions in cluttered environments optimizes spatial navigation and learning
Extensive studies in rodents show that place cells in the hippocampus have firing patterns that are highly correlated with the animal's location in the environment and are organized in layers of increasing field sizes or scales along its dorsoventral axis. In this study, we use a spatial cognition model to show that different field sizes could be exploited to adapt the place cell representation to different environments according to their size and complexity. Specifically, we provide an in-depth analysis of how to distribute place cell fields according to the obstacles in cluttered environments to optimize learning time and path optimality during goal-oriented spatial navigation tasks. The analysis uses a reinforcement learning (RL) model that assumes that place cells allow encoding the state. While previous studies have suggested exploiting different field sizes to represent areas requiring different spatial resolutions, our work analyzes specific distributions that adapt the representation to the environment, activating larger fields in open areas and smaller fields near goals and subgoals (e.g., obstacle corners). In addition to assessing how the multi-scale representation may be exploited in spatial navigation tasks, our analysis and results suggest place cell representations that can impact the robotics field by reducing the total number of cells for path planning without compromising the quality of the paths learned.  more » « less
Award ID(s):
1703225
PAR ID:
10432447
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Computational Neuroscience
Volume:
16
ISSN:
1662-5188
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a biologically-inspired computational model of the rodent hippocampus based on recent studies of the hippocampus showing that its longitudinal axis is involved in complex spatial navigation. While both poles of the hippocampus, i.e. septal (dorsal) and temporal (ventral), encode spatial information; the septal area has traditionally been attributed more to navigation and action selection; whereas the temporal pole has been more involved with learning and motivation. In this work we hypothesize that the septal-temporal organization of the hippocampus axis also provides a multi-scale spatial representation that may be exploited during complex rodent navigation. To test this hypothesis, we developed a multi-scale model of the hippocampus evaluated it with a simulated rat on a multi-goal task, initially in a simplified environment, and then on a more complex environment where multiple obstacles are introduced. In addition to the hippocampus providing a spatial representation of the environment, the model includes an actor-critic framework for the motivated learning of the different tasks. 
    more » « less
  2. Abstract A large body of evidence shows that the hippocampus is necessary for successful spatial navigation. Various studies have shown anatomical and functional differences between the dorsal (DHC) and ventral (VHC) portions of this structure. The DHC is primarily involved in spatial navigation and contains cells with small place fields. The VHC is primarily involved in context and emotional encoding contains cells with large place fields and receives major projections from the medial prefrontal cortex. In the past, spatial navigation experiments have used relatively simple tasks that may not have required a strong coordination along the dorsoventral hippocampal axis. In this study, we tested the hypothesis that the DHC and VHC may be critical for goal‐directed navigation in obstacle‐rich environments. We used a learning task in which animals memorize the location of a set of rewarded feeders, and recall these locations in the presence of small or large obstacles. We report that bilateral DHC or VHC inactivation impaired spatial navigation in both large and small obstacle conditions. Importantly, this impairment did not result from a deficit in the spatial memory for the set of feeders (i.e., recognition of the goal locations) because DHC or VHC inactivation did not affect recall performance when there was no obstacle on the maze. We also show that the behavioral performance of the animals was correlated with several measures of maze complexity and that these correlations were significantly affected by inactivation only in the large object condition. These results suggest that as the complexity of the environment increases, both DHC and VHC are required for spatial navigation. 
    more » « less
  3. Abstract Investigations into how individual neurons encode behavioral variables of interest have revealed specific representations in single neurons, such as place and object cells, as well as a wide range of cells with conjunctive encodings or mixed selectivity. However, as most experiments examine neural activity within individual tasks, it is currently unclear if and how neural representations change across different task contexts. Within this discussion, the medial temporal lobe is particularly salient, as it is known to be important for multiple behaviors including spatial navigation and memory, however the relationship between these functions is currently unclear. Here, to investigate how representations in single neurons vary across different task contexts in the medial temporal lobe, we collected and analyzed single‐neuron activity from human participants as they completed a paired‐task session consisting of a passive‐viewing visual working memory and a spatial navigation and memory task. Five patients contributed 22 paired‐task sessions, which were spike sorted together to allow for the same putative single neurons to be compared between the different tasks. Within each task, we replicated concept‐related activations in the working memory task, as well as target‐location and serial‐position responsive cells in the navigation task. When comparing neuronal activity between tasks, we first established that a significant number of neurons maintained the same kind of representation, responding to stimuli presentations across tasks. Further, we found cells that changed the nature of their representation across tasks, including a significant number of cells that were stimulus responsive in the working memory task that responded to serial position in the spatial task. Overall, our results support a flexible encoding of multiple, distinct aspects of different tasks by single neurons in the human medial temporal lobe, whereby some individual neurons change the nature of their feature coding between task contexts. 
    more » « less
  4. Weitzenfeld, A (Ed.)
    In the last decade, studies have demonstrated that hippocampal place cells influence rats’ navigational learning ability. Moreover, researchers have observed that place cell sequences associated with routes leading to a reward are reactivated during rest periods. This phenomenon is known as Hippocampal Replay, which is thought to aid navigational learning and memory consolidation. These findings in neuroscience have inspired new robot navigation models that emulate the learning process of mammals. This study presents a novel model that encodes path information using place cell connections formed during online navigation. Our model employs these connections to generate sequences of state-action pairs to train our actor-critic reinforcement learning model offline. Our results indicate that our method can accelerate the learning process of solving an open-world navigational task. Specifically, we demonstrate that our approach can learn optimal paths through open-field mazes with obstacles. 
    more » « less
  5. Autonomous navigation in construction environments is particularly challenging due to dynamic obstacles and uncertain surroundings. While recent advances in Building Information Modeling (BIM)-based planning have leveraged spatial and semantic information to improve navigation, most prior work assumes precise localization of the BIM model to enable global path planning. In contrast, this paper introduces an online replanning framework that registers obstacles on discovery within BIM and replans according to the updated semantic map. Our method integrates object-aware path planning by utilizing large language models (LLMs) to extract semantic danger sentiments from BIM-annotated objects and their spatial information about the mission environment. Additionally, we demonstrate practical feasibility by integrating a path tracking control, ensuring generated paths are not only safer but also realistically executable by mobile robots. Experimental results demonstrate an improved obstacle avoidance by 2.8× compared to traditional A* algorithms in dynamically updated environments. 
    more » « less