skip to main content


Title: The winds of young Solar-type stars in the Pleiades, AB Doradus, Columba, and β Pictoris
ABSTRACT

Solar-type stars, which shed angular momentum via magnetized stellar winds, enter the main sequence with a wide range of rotational periods Prot. This initially wide range of rotational periods contracts and has mostly vanished by a stellar age $t\sim {0.6}\, {\rm Gyr}$, after which Solar-type stars spin according to the Skumanich relation $P_\text{rot}\propto \sqrt{t}$. Magnetohydrodynamic stellar wind models can improve our understanding of this convergence of rotation periods. We present wind models of 15 young Solar-type stars aged ∼24 Myr to ∼0.13 Gyr. With our previous wind models of stars aged ∼0.26 and ∼0.6 Gyr we obtain 30 consistent three-dimensional wind models of stars mapped with Zeeman–Doppler imaging – the largest such set to date. The models provide good cover of the pre-Skumanich phase of stellar spin-down in terms of rotation, magnetic field, and age. We find the mass-loss rate $\dot{M}\propto \Phi ^{{0.9\pm 0.1}}$ with a residual spread of ∼150 per cent and the wind angular momentum loss rate $\dot{J}\propto {}P_\text{rot}^{-1} \Phi ^{1.3\pm 0.2}$ with a residual spread of ∼500 per cent where Φ is the unsigned surface magnetic flux. When comparing different magnetic field scalings for each single star we find a gradual reduction in the power-law exponent with increasing magnetic field strength.

 
more » « less
NSF-PAR ID:
10432575
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
524
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2042-2063
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We constrain the orbital period (Porb) distribution of low-mass detached main-sequence eclipsing binaries (EBs) with light-curves from the Zwicky Transient Facility (ZTF), which provides a well-understood selection function and sensitivity to faint stars. At short periods (Porb ≲ 2 d), binaries are predicted to evolve significantly due to magnetic braking (MB), which shrinks orbits and ultimately brings detached binaries into contact. The period distribution is thus a sensitive probe of MB. We find that the intrinsic period distribution of low-mass (0.1 ≲ M1/M⊙ < 0.9) binaries is basically flat (${\rm d}N/{\rm d}P_{\rm orb} \propto P_{\rm orb}^0$) from Porb = 10 d down to the contact limit. This is strongly inconsistent with predictions of classical MB models based on the Skumanich relation, which are widely used in binary evolution calculations and predict ${\rm d}N/{\rm d}P_{\rm orb} \propto P_{\rm orb}^{7/3}$ at short periods. The observed distributions are best reproduced by models in which the magnetic field saturates at short periods with a MB torque that scales roughly as $\dot{J}\propto P_{\rm orb}^{-1}$, as opposed to $\dot{J} \propto P_{\rm orb}^{-3}$ in the standard Skumanich law. We also find no significant difference between the period distributions of binaries containing fully and partially convective stars. Our results confirm that a saturated MB law, which was previously found to describe the spin-down of rapidly rotating isolated M dwarfs, also operates in tidally locked binaries. We advocate using saturated MB models in binary evolution calculations. Our work supports previous suggestions that MB in cataclysmic variables (CVs) is much weaker than assumed in the standard evolutionary model, unless mass transfer leads to significant additional angular momentum loss in CVs.

     
    more » « less
  2. Abstract

    We present stellar rotation periods for late K- and early M-dwarf members of the 4 Gyr old open cluster M67 as calibrators for gyrochronology and tests of stellar spin-down models. Using Gaia EDR3 astrometry for cluster membership and Pan-STARRS (PS1) photometry for binary identification, we build this set of rotation periods from a campaign of monitoring M67 with the Canada–France–Hawaii Telescope’s MegaPrime wide-field imager. We identify 1807 members of M67, of which 294 are candidate single members with significant rotation period detections. Moreover, we fit a polynomial to the period versus color-derived effective temperature sequence observed in our data. We find that the rotation of very cool dwarfs can be explained by simple solid-body spin-down between 2.7 and 4 Gyr. We compare this rotational sequence to the predictions of gyrochronological models and find that the best match is Skumanich-like spin-down,Prott0.62, applied to the sequence of Ruprecht 147. This suggests that, for spectral types K7–M0 with near-solar metallicity, once a star resumes spinning down, a simple Skumanich-like relation is sufficient to describe their rotation evolution, at least through the age of M67. Additionally, for stars in the range M1–M3, our data show that spin-down must have resumed prior to the age of M67, in conflict with the predictions of the latest spin-down models.

     
    more » « less
  3. Abstract

    The zero-age main sequence (ZAMS) is a critical phase for stellar angular momentum evolution, as stars transition from contraction-dominated spin-up to magnetic wind-dominated spin-down. We present the first robust observational constraints on rotation for FGK stars at ≈40 Myr. We have analyzed TESS light curves for 1410 members of five young open clusters with ages between 25 and 55 Myr: IC 2391, IC 2602, NGC 2451A, NGC 2547, and Collinder 135. In total, we measure 868 rotation periods, including 96 new, high-quality periods for stars around 1M. This is an increase of ten times the existing literature sample at the ZAMS. We then use theτ2method to compare our data to models for stellar angular momentum evolution. Although the ages derived from these rotation models do not match isochronal ages, we show that these observations can clearly discriminate between different models for stellar wind torques. Finally,τ2fits indicate that magnetic braking and/or internal angular momentum transport significantly impact rotational evolution even on the pre-main sequence.

     
    more » « less
  4. Abstract

    Two magnetic braking models are implemented inMESAfor use in theMISTstellar model grids. Stars less than about 1.3 solar masses are observed to spin down over time through interaction with their magnetized stellar winds (i.e., magnetic braking). This is the basis for gyrochronology and is fundamental to the evolution of lower-mass stars. The detailed physics behind magnetic braking are uncertain, as are 1D stellar evolution models. Thus, we calibrate our models and compare to data from open clusters. Each braking model tested here is capable of reproducing aspects of the data, with important distinctions; neither fully accounts for the observations. The Matt et al. prescription matches the slowly rotating stars observed in open clusters but tends to overestimate the presence of rapidly rotating stars. The Garraffo et al. prescription often produces too much angular momentum loss to accurately match the observed slow sequence for lower-mass stars but reproduces the bimodal nature of slowly and rapidly rotating stars observed in open clusters fairly well. Our models additionally do not reproduce the observed solar lithium depletion, corroborating previous findings that effects other than rotation may be important. We find additional evidence that some level of mass dependency may be missing in these braking models to match the rotation periods observed in clusters older than 1 Gyr better.

     
    more » « less
  5. Abstract

    Accurate stellar ages are essential for our understanding of the star formation history of the Milky Way and Galactic chemical evolution, as well as to constrain exoplanet formation models. Gyrochronology, a relationship between stellar rotation and age, appears to offer a reliable age indicator for main-sequence (MS) stars over the mass range of approximately 0.6–1.3M. Those stars lose their angular momentum due to magnetic braking and as a result their rotation speeds decrease with age. Although current gyrochronology relations have been fairly well tested for young MS stars with masses greater than 1M, primarily in young open clusters, insufficient tests exist for older and lower mass MS stars. Binary stars offer the potential to expand and fill in the range of ages and metallicity over which gyrochronology can be empirically tested. In this paper, we demonstrate a Monte Carlo approach to evaluate gyrochronology models using binary stars. As examples, we used five previously published wide binary pairs. We also demonstrate a Monte Carlo approach to assess the precision and accuracy of ages derived from each gyrochronology model. For the traditional Skumanich models, the age uncertainties areσage/age = 15%–20% for stars withBV= 0.65 andσage/age = 5%–10% for stars withBV= 1.5 and rotation periodP≤ 20 days.

     
    more » « less