Light-induced O 2 -dependent aliphatic carbon–carbon (C–C) bond cleavage in bipyridine-ligated Co( ii ) chlorodiketonate complexes
Illumination of aerobic acetonitrile solutions of bipyridine-ligated Co(ii) chlorodiketonate complexes results in O2-dependent aliphatic C–C bond cleavage with high18O incorporation.
more »
« less
- PAR ID:
- 10471774
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Dalton Transactions
- Volume:
- 52
- Issue:
- 13
- ISSN:
- 1477-9226
- Page Range / eLocation ID:
- 4152 to 4160
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary Increasing atmospheric CO2is changing the dynamics of tropical savanna vegetation. C3trees and grasses are known to experience CO2fertilization, whereas responses to CO2by C4grasses are more ambiguous.Here, we sample stable carbon isotope trends in herbarium collections of South African C4and C3grasses to reconstruct13C discrimination.We found that C3grasses showed no trends in13C discrimination over the past century but that C4grasses increased their13C discrimination through time, especially since 1950. These changes were most strongly linked to changes in atmospheric CO2rather than to trends in rainfall climatology or temperature.Combined with previously published evidence that grass biomass has increased in C4‐dominated savannas, these trends suggest that increasing water‐use efficiency due to CO2fertilization may be changing C4plant–water relations. CO2fertilization of C4grasses may thus be a neglected pathway for anthropogenic global change in tropical savanna ecosystems.more » « less
-
Abstract We report the first statistical analyses of [Cii] and dust continuum observations in six strong Oiabsorber fields at the end of the reionization epoch obtained by the Atacama Large Millimeter/submillimeter Array (ALMA). Combined with one [Cii] emitter reported in Wu et al., we detect one Oi-associated [Cii] emitter in six fields. At redshifts of Oiabsorbers in nondetection fields, no emitters are brighter than our detection limit within impact parameters of 50 kpc and velocity offsets between ±200 km s−1. The averaged [Cii]-detection upper limit is <0.06 Jy km s−1(3σ), corresponding to the [Cii] luminosity ofL[CII]< 5.8 × 107L⊙and the [Cii]-based star formation rate of SFR[CII]<5.5M⊙yr−1. Cosmological simulations suggest that only ∼10−2.5[Cii] emitters around Oiabsorbers have comparable SFR to our detection limit. Although the detection in one out of six fields is reported, an order of magnitude number excess of emitters obtained from our ALMA observations supports that the contribution of massive galaxies that caused the metal enrichment cannot be ignored. Further, we also found 14 tentative galaxy candidates with a signal-to-noise ratio of ≈4.3 at large impact parameters (>50 kpc) and having larger outflow velocities within ±600 km s−1. If these detections are confirmed in the future, then the mechanism of pushing metals at larger distances with higher velocities needs to be further explored from the theoretical side.more » « less
-
We present a new set of reference materials, the ND70‐series, forin situmeasurement of volatile elements (H2O, CO2, S, Cl, F) in silicate glass of basaltic composition. The materials were synthesised in piston cylinders at pressures of 1 to 1.5 GPa under volatile‐undersaturated conditions. They span mass fractions from 0 to 6%m/mH2O, from 0 to 1.6%m/mCO2and from 0 to 1%m/mS, Cl and F. The materials were characterised by elastic recoil detection analysis for H2O, by nuclear reaction analysis for CO2, by elemental analyser for CO2, by Fourier transform infrared spectroscopy for H2O and CO2, by secondary ion mass spectrometry for H2O, CO2, S, Cl and F, and by electron probe microanalysis for CO2, S, Cl and major elements. Comparison between expected and measured volatile amounts across techniques and institutions is excellent. It was found however that SIMS measurements of CO2mass fractions using either Cs+or O−primary beams are strongly affected by the glass H2O content. Reference materials have been made available to users at ion probe facilities in the US, Europe and Japan. Remaining reference materials are preserved at the Smithsonian National Museum of Natural History where they are freely available on loan to any researcher.more » « less
-
Abstract We report on the tunable and enhanced dielectric properties of tungsten (W) incorporated gallium oxide (Ga2O3) polycrystalline electroceramics for energy and power electronic device applications. The W‐incorporated Ga2O3(Ga2−2xWxO3, 0.00 ≤ x ≤ 0.20; GWO) compounds were synthesized by the high‐temperature solid‐state chemical reaction method by varying the W‐content. The fundamental aspects of the dielectric properties in correlation with the crystal structure, phase, and microstructure of the GWO polycrystalline compounds has been investigated in detail. A detailed study performed ascertains the W‐induced changes in the dielectric constant, loss tangent (tanδ) and ac conductivity. It was found that the dielectric constant increases with addition of W in the system as a function of temperature (25°C‐500°C). Frequency dependence (102‐106 Hz) of the dielectric constant follows the modified Debye model with a relaxation time of ∼20 to 90 μs and a spreading factor of 0.39 to 0.65. The dielectric constant of GWO is temperature independent almost until ∼300°C, and then increases rapidly in the range of 300°C to 500°C. W‐induced enhancement in the dielectric constant of GWO is fully evident in the frequency and temperature dependent dielectric studies. The frequency and temperature dependent tanδreveals the typical behavior of relaxation loses in GWO. Small polaron hopping mechanism is evident in the frequency dependent electrical transport properties of GWO. The remarkable effect of W‐incorporation on the dielectric and electrical transport properties of Ga2O3is explained by a two‐layer heterogeneous model consisting of thick grains separated by very thin grain boundaries along with the formation of a Ga2O3‐WO3composite was able to account for the observed temperature and frequency dependent electrical properties in GWO. The results demonstrate that the structure, electrical and dielectric properties can be tailored by tuning W‐content in the GWO compounds.more » « less