skip to main content


This content will become publicly available on December 1, 2024

Title: Building transformative city-university sustainability partnerships: the Audacious Partnerships Process
Abstract City governments and urban universities are well-positioned to play critical roles in advancing urban sustainability transformations. However, in partnering, cities and universities often focus efforts on discrete sustainability-related projects, neglecting the development of long-term relationships and deep, inter-organizational ties that can allow for collaboration on lasting and transformational change. Yet, at both cities and universities there are often individuals who are deeply interested in developing better partnerships that contribute to the sustainability and livability of their communities. This research develops and tests an evidence-based and facilitated process to guide sustainability researchers and municipal practitioners in the development of transformational City-university partnerships for sustainability. The Audacious Partnerships Process was tested by four City-university partnerships including Arizona State University and the City of Tempe, Dublin City University and the City of Dublin, King’s College London and the City of Westminster and the National Autonomous University of Mexico and Mexico City. The Audacious Partnerships Process as well as results from post-surveys and interviews following implementation are elaborated. We conclude with key lessons for modifying and implementing the process to contribute to transformative partnership development.  more » « less
Award ID(s):
1828010
NSF-PAR ID:
10432768
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Urban Transformations
Volume:
5
Issue:
1
ISSN:
2524-8162
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tree growth is a key mechanism driving carbon sequestration in forest ecosystems. Environmental conditions are important regulators of tree growth that can vary considerably between nearby urban and rural forests. For example, trees growing in cities often experience hotter and drier conditions than their rural counterparts while also being exposed to higher levels of light, pollution, and nutrient inputs. However, the extent to which these intrinsic differences in the growing conditions of trees in urban versus rural forests influence tree growth response to climate is not well known. In this study, we tested for differences in the climate sensitivity of tree growth between urban and rural forests along a latitudinal transect in the eastern United States that included Boston, Massachusetts, New York City, New York, and Baltimore, Maryland. Using dendrochronology analyses of tree cores from 55 white oak trees (Quercus alba), 55 red maple trees (Acer rubrum), and 41 red oak trees (Quercus rubra) we investigated the impacts of heat stress and water stress on the radial growth of individual trees. Across our three‐city study, we found that tree growth was more closely correlated with climate stress in the cooler climate cities of Boston and New York than in Baltimore. Furthermore, heat stress was a significant hindrance to tree growth in higher latitudes while the impacts of water stress appeared to be more evenly distributed across latitudes. We also found that the growth of oak trees, but not red maple trees, in the urban sites of Boston and New York City was more adversely impacted by heat stress than their rural counterparts, but we did not see these urban–rural differences in Maryland. Trees provide a wide range of important ecosystem services and increasing tree canopy cover was typically an important component of urban sustainability strategies. In light of our findings that urbanization can influence how tree growth responds to a warming climate, we suggest that municipalities consider these interactions when developing their tree‐planting palettes and when estimating the capacity of urban forests to contribute to broader sustainability goals in the future.

     
    more » « less
  2. This research paper investigates the process of forming strategic partnerships to enact organizational change. There has been increasing interest in forming strategic partnerships in higher education due to a variety of motivations, such as pooling of resources and improving the professional development process for students (Worrall, 2007). It is important to examine how strategic partnerships form because the process of formation sets the objectives and expectations of the relationship, which in turn impact the likelihood of success and sustainability of the relationship. Further, despite the growing interest in forming strategic partnerships, the majority of these partnerships fail (Eddy, 2010). This analysis of strategic partnerships emerges from our participatory action research with university change agents activated through the NSF REvolutionizing engineering and computer science Departments (RED) Program. Through an NSF-funded collaboration between [University 1] and [University 2], we work with the change-making teams to investigate the change process and provide just-in-time training and support. Utilizing qualitative data from focus group discussions and observations of monthly cross-team teleconference calls, we examine the importance of motivations, social capital, and organizational capital in the process of forming strategic partnerships. We find that change-making teams have utilized a variety of strategies to establish goals and governance within strategic partnerships. These strategies include establishing alignment among institutional goals, project goals, and partner organization goals. Further, the strategic partnerships that have been most successful have occurred when teams have intentionally built mutually beneficial relationships and invited their partner into the visioning process for their change projects. These results delineate practices for initiating strategic partnerships within higher education and encourage faculty to build mutually beneficial strategic partnerships. 
    more » « less
  3. Abstract

    Cities located in the Arctic often have extreme geographic and environmental contexts and unique sociopolitical and economic trajectories that, when combined with amplified effects of climate change in the region, impact future sustainable development. Well-recognized and standardized sustainable development indicator (SDI) frameworks such as ISO 37120 or UN-Habitat City Prosperity Index are often used to compare data across cities globally using comprehensive sets of indicators. While such indexes help characterize progress toward development and guide short- and long-term decision-making, they often lack relevance to specific contexts or characterize future visions of urban growth. To evaluate the extent of these deficiencies and to provide a comparative analysis of approaches to sustainable urban growth in the Arctic, this paper analyzes city planning documents for five northern cities - Anchorage (USA), Utqiagvik (USA), Reyjavik (ISL), Iqaluit, (CAN), Whitehorse, (CAN) - for goals, targets, and indicators and compare these to thematic areas and indicators defined by ISO 37120:2018 Sustainable Cities and Communities. The results confirm that although international SDI frameworks may be useful for comparative analysis of cities across diverse regions, they exclude important local factors that influence goal-oriented urban sustainability planning strategies employed in the Arctic region.

     
    more » « less
  4. This dataset incorporates Mexico City related essential data files associated with Beth Tellman's dissertation: Mapping and Modeling Illicit and Clandestine Drivers of Land Use Change: Urban Expansion in Mexico City and Deforestation in Central America. It contains spatio-temporal datasets covering three domains; i) urban expansion from 1992-2015, ii) district and section electoral records for 6 elections from 2000-2015, iii) land titling (regularization) data for informal settlements from 1997-2012 on private and ejido land. The urban expansion data includes 30m resolution urban land cover for 1992 and 2013 (methods published in Goldblatt et al 2018), and a shapefile of digitized urban informal expansion in conservation land from 2000-2015 using the Worldview-2 satellite. The electoral records include shapefiles with the geospatial boundaries of electoral districts and sections for each election, and .csv files of the number of votes per party for mayoral, delegate, and legislature candidates. The private land titling data includes the approximate (in coordinates) location and date of titles given by the city government (DGRT) extracted from public records (Diario Oficial) from 1997-2012. The titling data on ejido land includes a shapefile of georeferenced polygons taken from photos in the CORETT office or ejido land that has been expropriated by the government, and including an accompany .csv from the National Agrarian Registry detailing the date and reason for expropriation from 1987-2007. Further details are provided in the dissertation and subsequent article publication (Tellman et al 2021). The Mexico City portion of these data were generated via a National Science Foundation sponsored project (No. 1657773, DDRI: Mapping and Modeling Clandestine Drivers of Urban Expansion in Mexico City). The project P.I. is Beth Tellman with collaborators at ASU (B.L Turner II and Hallie Eakin). Other collaborators include the National Autonomous University of Mexico (UNAM), at the Institute of Geography via Dr. Armando Peralta Higuera, who provided support for two students, Juan Alberto Guerra Moreno and Kimberly Mendez Gomez for validating the Landsat urbanization algorithm. Fidel Serrano-Candela, at the UNAM Laboratory of the National Laboratory for Sustainability Sciences (LANCIS) also provided support for urbanization algorithm development and validation, and Rodrigo Garcia Herrera, who provided support for hosting data at LANCIS (at: http://patung.lancis.ecologia.unam.mx/tellman/). Additional collaborators include Enrique Castelán, who provided support for the informal urbanization data from SEDEMA (Ministry of the Environmental for Mexico City). Electoral, land titling, and land zoning data were digitized with support from Juana Martinez, Natalia Hernandez, Alexia Macario Sanchez, Enrique Ruiz Durazo, in collaboration with Felipe de Alba, at CESOP (Center of Social Studies and Public Opinion, at the Mexican Legislative Assembly). The data include geospatial time series data regarding changes in urban land cover, digitized electoral results, land titling, land zoning, and public housing. Additional funding for this work was provided by NSF under Grant No. 1414052, CNH: The Dynamics of Multiscalar Adaptation in Megacities (PI H. Eakin), and the NSF-CONACYT GROW fellowship NSF No. 026257-001 and CONACYT number 291303 (PI Bojórquez). References: Tellman, B., Eakin, H., Janssen, M.A., Alba, F. De, Ii, B.L.T., 2021. The Role of Institutional Entrepreneurs and Informal Land Transactions in Mexico City’s Urban Expansion. World Dev. 140, 1–44. https://doi.org/10.1016/j.worlddev.2020.105374 Goldblatt, R., Stuhlmacher, M.F., Tellman, B., Clinton, N., Hanson, G., Georgescu, M., Wang, C., Serrano-Candela, F., Khandelwal, A.K., Cheng, W.-H., Balling, R.C., 2018. Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sens. Environ. 205, 253–275. https://doi.org/10.1016/j.rse.2017.11.026 
    more » « less
  5. Cities are increasingly making decisions related to sustainability, and information from the field of urban ecology may be useful in informing these decisions. However, the potential utility of this information may not translate into it actually being used. We surveyed municipal sustainability staff through the Minnesota GreenStep Cities program documenting their information needs and information sources, and used these results to identify the frequency with which urban ecologists are publishing studies of potential relevance to practitioners. We also quantified funded awards from the U.S. National Science Foundation in urban ecology that explicitly describe active partnerships with city policy makers. Our results show that urban ecologists are increasingly generating information of potential relevance to city sustainability efforts, with rapid increases in the number of articles published and grants funded on areas identified as key information needs. Our results also suggest that the transmission of information from academic urban ecologists to practitioners occurs mostly through indirect pathways, as municipal sustainability staff reported relying heavily on general web searches and government agency websites to find information. We found evidence of an increasing frequency of active collaborations between urban ecologists and policy makers from NSF grant abstracts. Our findings are consistent with previous findings that traditional models of passive communication to practitioners through academic journals results in a low efficiency of use of this knowledge, but that the potential for urban ecologists to help inform municipal sustainability initiatives through active collaborations with practitioners is great. 
    more » « less