skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Proposing, Planning, and Teaching an Equity- and Justice-Centered Secondary Pre-Service CS Teacher Education Program
Teachers are essential to equitably broadening participation in computing in schools, but the creation of CS teacher education pathways faces many challenges. In this experience report, we share the many political, administrative, institutional, and sustainability barriers our institution faced in creating a secondary CS pre-service pathway. Throughout, we discuss the particular design choices we made in order to center equity and justice, both in the content of the program, but also in its structure, policies, and resources, which were often in tension with state standards and policies. We also describe our experience teaching and supporting the inaugural cohort of graduates as well as the graduates' experiences, which revealed tension between utopian and dystopian futures of computing and their role in helping students navigate them. We end with a reflection on key factors that we believe led to its successful first year launch, including leadership, interdisciplinarity, capacity, timing, and funding, and on sustainability concerns, including tuition subsidy and instructional capacity.  more » « less
Award ID(s):
2031265
PAR ID:
10432795
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Technical Symposium on Computer Science Education (SIGCSE)
Page Range / eLocation ID:
583 to 589
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. At a time when computing continues to gain importance in society, it is more crucial than ever to ensure that computer science education meets the needs of all students. To this end, the Computer Science Teachers Association (CSTA) is updating its K-12 computer science (CS) standards. As a prelude to the standards revision, CSTA – working with many partners – has launched a project, Reimagining CS Pathways: High School and Beyond, to articulate what CS content is essential for all high school graduates to know and to establish pathways for continued study of CS beyond that foundational content. The Reimagining project drew on the expertise and experiences of dozens of participants – including high school CS teachers, college CS faculty, state and local education leaders, CS education researchers, and those working for nonprofits and in the tech industry. These participants reflected diversity across many dimensions, including demographics, role, and expertise. They participated in focus groups, interviews, and in-person convenings, and they provided substantial asynchronous feedback. The result of these extensive efforts is contained in this report, which articulates the foundational CS content and resulting pathways. The foundational CS content is organized into Topic Areas, Pillars, and Dispositions. The Topic Areas, which reflect the content that is essential for all high school graduates, are 1) Algorithms, 2), Programming, 3) Data and Analysis, 4) Computing Systems and Security, and 5) Preparation for the Future. The Pillars, which reflect essential ideas and practices that cut across all of the Topic Areas, are 1) Impacts and Ethics, 2) Inclusive Collaboration, 3) Computational Thinking, and 4) Human-Centered Design. While they are not explicitly taught, the goal is to develop a set of specific dispositions in CS. These Dispositions are persistence, reflectiveness, creativity, curiosity, critical thinking, and sense of belonging in CS. There are many possible pathways stemming from this foundational content, ranging from Cybersecurity and Artificial Intelligence to X + CS (where another subject, such as Journalism or Biology, is integrated with the study of computing). Implementation of these pathways will vary significantly depending on community priorities and contexts. We recognize that schools will need to be selective in their implementation of CS pathways due to limited resources, and we make recommendations for how to select which options to implement. Woven throughout this work is a commitment to improving equity in CS education. This commitment to equity is embedded throughout both the process and the outcome of the Reimagining project. It manifests in an effort to reimagine CS to ensure opportunities for all students and to prepare them for a world increasingly powered by computing. 
    more » « less
  2. Enrollment in computing at the college level has skyrocketed, and many institutions have responded by enacting competitive enrollment processes. However, little is known about the effects of enrollment policies on students' experiences. To identify relationships between those policies and students' experiences, we linked survey data from 1245 first-year students in 80 CS departments to a dataset of department policies. We found that competitive enrollment negatively predicts first-year students' perception of the computing department as welcoming, their sense of belonging, and their self-efficacy in computing. Both belonging and self-efficacy are known predictors of student retention in CS. In addition, these relationships are stronger for students without pre-college computing experience. Our classification of institutions as competitive is conservative, and false positives are likely. This biases our results and suggests that the negative relationships we found are an underestimation of the effects of competitive enrollment. 
    more » « less
  3. Hartshone, R (Ed.)
    This landscape study explored structural barriers to diversity in computing education by focusing on Computer Science Education State Supervisors (CSEdSS) in state education agencies. Positioned in 41 states, CSEdSS play a crucial role in ensuring equitable access to K-12 CS learning pathways. Despite efforts to expand CS education policy, equity issues in access persist. Based on a survey of CSEdSS (n=32) with a 78% response rate, we applied the Capacity for, Access to, Participation in, and Experience of (CAPE) Framework to analyze CSEdSS survey responses to questions about how they enact their role and the ways in which equity in CS education impacts their work. Findings revealed that CSEdSS leveraged the opportunities available to them to build capacity and advance equitable access to CS education across diverse state contexts, even as they navigated systems that present challenges to equitable implementation. The results highlighted the importance of using a critical analysis approach to interrogate policy enactment through a sociocultural and systems-based lens, addressing the complexities of implementing CS education policies at macrosystem, mesosystem, and microsystem levels to support inclusive and equitable pathways in CS education. 
    more » « less
  4. Background and Context.  Computing is considered a fundamental skill for civic engagement, self-expression, and employment opportunity. Despite this, there exist significant equity gaps in post-secondary computing enrollment and retention. Specifically, in the California State University (CSU) system, which serves close to half a million undergraduate students, students identifying as Hispanic/Latino make up a smaller percentage of CS majors than expected from the state’s overall population; and, once enrolled, tend to leave the CS major at higher rates than other students. Purpose.  We report on the impacts of a curricular intervention aimed at strengthening the sense of belonging of Hispanic/Latino students in computing, with the eventual goal of improving retention in computing majors for those students. Methods.  Working in an alliance of six universities within the CSU (five of which are designated as Hispanic-Serving Institutions), we have incorporated socially responsible computing across early CS courses. We aim for alignment between our curriculum and students’ communal goal orientations, and for coursework that attends to students’ interests, values, and cultural assets. Over a two-year-long study, we collected survey data to learn about the impact of our curricular intervention on students’ sense of belonging and perceived learning and agency. Findings.  We found that students generally reported high communal goal orientations and, at the campuseswithoutcompetitive enrollment policies, our intervention had a significant positive impact on students’ senses of belonging. This effect was observed between control and treatment terms as well as within treatment terms. We also note that Hispanic/Latino students were more likely than other students to report that non-curricular factors like work and family obligations interfered with their learning, and appeared to experience slightly stronger benefits from the intervention. Implications.  Our data suggest positive outcomes for integrating socially responsible computing into early CS courses, especially for Hispanic/Latino students at certain Primarily Undergraduate Institutions (PUIs). Unlike much prior research, we found that conducting studies outside of Primarily White Institutions (PWIs) can provide new insights into the impact of curricular interventions on student experience and retention. Our varying results by campus suggest that factors such as campus population, acceptance rate, and departmental enrollment policies ought to also be taken into account in studies that aim to broaden participation in computing. Would results from prior research on recruitment and retention of Hispanic/Latino students or other underrepresented students look different if such studies were replicated at institutions with different demographics and enrollment policies? 
    more » « less
  5. Computing self-efficacy is an important factor in shaping students' motivation, performance, and persistence in computer science (CS) courses. Therefore, investigating computing self-efficacy may help to improve the persistence of students from historically underrepresented groups in computing. Previous research has shown that computing self-efficacy is positively correlated with prior computing experience, but negatively correlated with some demographic identities (e.g., identifying as a woman). However, existing research has not demonstrated these patterns on a large scale while controlling for confounding variables and institutional context. In addition, there is a need to study the experiences of students with multiple marginalized identities through the lens of intersectionality. Our goal is to investigate the relationship between students' computing self-efficacy and their prior experience in computing, demographic identities, and institutional policies. We conduct this investigation using a large, recent, and multi-institutional dataset with survey responses from 31,425 students. Our findings confirm that more computing experience positively predicts computing self-efficacy. However, identifying as Asian, Black, Native, Hispanic, non-binary, and/or a woman were statistically significantly associated with lower computing self-efficacy. The results of our work point to several future avenues for self-efficacy research in computing. 
    more » « less