skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: SpecNFS: A Challenge Dataset Towards Extracting Formal Models from Natural Language Specifications
Can NLP assist in building formal models for verifying complex systems? We study this challenge in the context of parsing Network File System (NFS) specifications. We define a semantic-dependency problem over SpecIR, a representation language we introduce to model sentences appearing in NFS specification documents (RFCs) as semantic dependency structures, and present an annotated dataset of 1,198 sentences. We develop and evaluate semantic-dependency parsing systems for this problem. Evaluations show that even when using a state-of-the-art language model, there is significant room for improvement, with the best models achieving an F1 score of only 60.5 and 33.3 in the named-entity-recognition and dependency-link-prediction sub-tasks, respectively. We also release additional unlabeled data and other domain-related texts. Experiments show that these additional resources increase the F1 measure when used for simple domain-adaption and transfer-learning-based approaches, suggesting fruitful directions for further research.  more » « less
Award ID(s):
1918225
PAR ID:
10432872
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Language Resources and Evaluation Conference
Page Range / eLocation ID:
2166--2176
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In specific domains, such as procedural scientific text, human labeled data for shallow semantic parsing is especially limited and expensive to create. Fortunately, such specific domains often use rather formulaic writing, such that the different ways of expressing relations in a small number of grammatically similar labeled sentences may provide high coverage of semantic structures in the corpus, through an appropriately rich similarity metric. In light of this opportunity, this paper explores an instance-based approach to the relation prediction sub-task within shallow semantic parsing, in which semantic labels from structurally similar sentences in the training set are copied to test sentences. Candidate similar sentences are retrieved using SciBERT embeddings. For labels where it is possible to copy from a similar sentence we employ an instance level copy network, when this is not possible, a globally shared parametric model is employed. Experiments show our approach outperforms both baseline and prior methods by 0.75 to 3 F1 absolute in the Wet Lab Protocol Corpus and 1 F1 absolute in the Materials Science Procedural Text Corpus. 
    more » « less
  2. Automatic discourse processing is bottlenecked by data: current discourse formalisms pose highly demanding annotation tasks involving large taxonomies of discourse relations, making them inaccessible to lay annotators. This work instead adopts the linguistic framework of Questions Under Discussion (QUD) for discourse analysis and seeks to derive QUD structures automatically. QUD views each sentence as an answer to a question triggered in prior context; thus, we characterize relationships between sentences as free-form questions, in contrast to exhaustive fine-grained taxonomies. We develop the first-of-its-kind QUD parser that derives a dependency structure of questions over full documents, trained using a large, crowdsourced question-answering dataset DCQA (Ko et al., 2022). Human evaluation results show that QUD dependency parsing is possible for language models trained with this crowdsourced, generalizable annotation scheme. We illustrate how our QUD structure is distinct from RST trees, and demonstrate the utility of QUD analysis in the context of document simplification. Our findings show that QUD parsing is an appealing alternative for automatic discourse processing. 
    more » « less
  3. Modern knowledge bases have matured to the extent of being capable of complex reasoning at scale. Unfortunately, wide deployment of this technology is still hindered by the fact that specifying the requisite knowledge requires skills that most domain experts do not have, and skilled knowledge engineers are in short supply. A way around this problem could be to acquire knowledge from text. However, the current knowledge acquisition technologies for information extraction are not up to the task because logic reasoning systems are extremely sensitive to errors in the acquired knowledge, and existing techniques lack the required accuracy by too large of a margin. Because of the enormous complexity of the problem, controlled natural languages (CNLs) were proposed in the past, but even they lack high enough accuracy. Instead of tackling the general problem of text understanding, our interest is in a related, but different, area of knowledge authoring—a technology designed to enable domain experts to manually create formalized knowledge using CNL. Our approach adopts and formalizes the FrameNet methodology for representing the meaning, enables incrementally-learnable and explainable semantic parsing, and harnesses rich knowledge graphs like BabelNet in the quest to obtain unique, disambiguated meaning of CNL sentences. Our experiments show that this approach is 95.6% accurate in standardizing the semantic relations extracted from CNL sentences—far superior to alternative systems. 
    more » « less
  4. Modern knowledge bases have matured to the extent of being capable of complex reasoning at scale. Unfortunately, wide deployment of this technology is still hindered by the fact that specifying the req- uisite knowledge requires skills that most domain experts do not have, and skilled knowledge engineers are in short supply. A way around this problem could be to acquire knowledge from text. However, the current knowledge acquisition technologies for information extraction are not up to the task because logic reasoning systems are extremely sensitive to er- rors in the acquired knowledge, and existing techniques lack the required accuracy by too large of a margin. Because of the enormous complexity of the problem, controlled natural languages (CNLs) were proposed in the past, but even they lack high enough accuracy. Instead of tackling the general problem of text understanding, our interest is in a related, but different, area of knowledge authoring—a technology designed to enable domain experts to manually create formalized knowledge using CNL. Our approach adopts and formalizes the FrameNet methodology for rep- resenting the meaning, enables incrementally-learnable and explainable semantic parsing, and harnesses rich knowledge graphs like BabelNet in the quest to obtain unique, disambiguated meaning of CNL sentences. Our experiments show that this approach is 95.6% accurate in standard- izing the semantic relations extracted from CNL sentences—far superior to alternative systems. 
    more » « less
  5. Pretrained multilingual contextual representations have shown great success, but due to the limits of their pretraining data, their benefits do not apply equally to all language varieties. This presents a challenge for language varieties unfamiliar to these models, whose labeled and unlabeled data is too limited to train a monolingual model effectively. We propose the use of additional language-specific pretraining and vocabulary augmentation to adapt multilingual models to low-resource settings. Using dependency parsing of four diverse low-resource language varieties as a case study, we show that these methods significantly improve performance over baselines, especially in the lowest-resource cases, and demonstrate the importance of the relationship between such models’ pretraining data and target language varieties. 
    more » « less