Abstract Simulations and observations suggest that galaxy interactions may enhance the star formation rate (SFR) in merging galaxies. One proposed mechanism is the torque exerted on the gas and stars in the larger galaxy by the smaller galaxy. We analyze the interaction torques and star formation activity on six galaxies from the FIRE-2 simulation suite with masses comparable to the Milky Way galaxy at redshiftz= 0. We trace the halos fromz= 3.6 toz= 0, calculating the torque exerted by the nearby galaxies on the gas in the central galaxy. We calculate the correlation between the torque and the SFR across the simulations for various mass ratios. For near-equal-stellar-mass-ratio interactions in the galaxy sample, occurring betweenz= 1.2−3.6, there is a positive and statistically significant correlation between the torque from nearby galaxies on the gas of the central galaxies and the SFR. For all other samples, no statistically significant correlation is found between the torque and the SFR. Our analysis shows that some, but not all, major interactions cause starbursts in the simulated Milky Way-mass galaxies, and that most starbursts are not caused by galaxy interactions. The transition from “bursty” at high redshift (z≳ 1) to “steady” star formation state at later times is independent of the interaction history of the galaxies, and most of the interactions do not leave significant imprints on the overall trend of the star formation history of the galaxies.
more »
« less
Probing bursty star formation by cross-correlating extragalactic background light and galaxy surveys
ABSTRACT Understanding the star formation rate (SFR) variability and how it depends on physical properties of galaxies is important for developing and testing the theory of galaxy formation. We investigate how statistical measurements of the extragalactic background light (EBL) can shed light on this topic and complement traditional methods based on observations of individual galaxies. Using semi-empirical models of galaxy evolution and SFR indicators sensitive to different star formation time-scales (e.g. H α and ultraviolet continuum luminosities), we show that the SFR variability, quantified by the joint probability distribution of the SFR indicators (i.e. the bivariate conditional luminosity function), can be characterized as a function of galaxy mass and redshift through the cross-correlation between deep, near-infrared maps of the EBL and galaxy distributions. As an example, we consider combining upcoming SPHEREx maps of the EBL with galaxy samples from Rubin Observatory Legacy Survey of Space and Time. We demonstrate that their cross-correlation over a sky fraction of fsky ∼ 0.5 can constrain the joint SFR indicator distribution at high significance up to z ∼ 2.5 for mass-complete samples of galaxies down to $$M_{*}\sim 10^9\, {\rm M}_{\odot }$$. These constraints not only allow models of different SFR variability to be distinguished, but also provide unique opportunities to investigate physical mechanisms that require large number statistics such as environmental effects. The cross-correlations investigated illustrate the power of combining cosmological surveys to extract information inaccessible from each data set alone, while the large galaxy populations probed capture ensemble-averaged properties beyond the reach of targeted observations towards individual galaxies.
more »
« less
- PAR ID:
- 10432873
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 524
- Issue:
- 2
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 2395-2406
- Size(s):
- p. 2395-2406
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The observed prevalence of galaxies exhibiting bursty star formation histories (SFHs) atz≳ 6 has created new challenges and opportunities for understanding their formation pathways. The degenerate effects of the efficiency and burstiness of star formation on the observed UV luminosity function are separable by galaxy clustering. However, quantifying the timescales of burstiness requires more than just the continuum UV measurements. Here we develop a flexible semi-analytic framework for modeling both the amplitude of star formation rate (SFR) variations and their temporal correlation, from which the luminosity function and clustering can be derived for SFR indicators tracing different characteristic timescales (e.g., UV continuum and Hα luminosities). Based on this framework, we study the prospect of using galaxy summary statistics to distinguish models where SFR fluctuations are prescribed by different power spectral density (PSD) forms. Using the Fisher matrix approach, we forecast the constraints on parameters in our PSD-based model that can be extracted from mock JWST observations of the UV and Hαluminosity functions and clustering bias factors atz∼ 6. If potential confusion due to e.g., dust attenuation and stellar population effects can be properly quantified, these results imply the possibility of probing the burstiness of high-zgalaxies with one-point and two-point statistics and highlight the benefits of combining long-term and short-term SFR tracers. Our flexible framework can be readily extended to characterize the SFH of high-redshift galaxies with a wider range of observational diagnostics.more » « less
-
We investigate the impact of bursty star formation on several galaxy scaling relations of dwarf galaxies using the $$\texttt{GRUMPY}$$ galaxy formation model. While this model reproduces the star formation rate (SFR)-stellar mass, stellar mass-gas mass, and stellar mass-metallicity relations, the scatter of these relations in the original model is smaller than observed. We explore the effects of additional stochasticity of SFR on the scaling relations using a model that reproduces the level of SFR burstiness in high-resolution zoom-in simulations. The additional SFR stochasticity increases the scatter in the SFR-stellar mass relation to a level similar to that exhibited by most nearby dwarf galaxies. The most extreme observed starbursting dwarfs, however, require higher levels of SFR stochasticity. We find that bursty star formation increases the scatter in the colour-magnitude distribution (CMD) for brighter dwarf galaxies $$(M_V < -12)$$ to the observed level, but not for fainter ones for which scatter remains significantly smaller than observed. This is due to the predominant old stellar populations in these faint model galaxies and their generally declining SFR over the past 10 Gyrs, rather than quenching caused by reionization. We examine the possibility that the colour scatter is due to scatter in metallicity, but show that the level of scatter required leads to an overestimation of scatter in the metallicity-mass relation. This illustrates that the scatter of observed scaling relations in the dwarf galaxy regime represents a powerful constraint on the properties of their star formation.more » « less
-
Abstract Ultra-diffuse galaxies (UDGs) are both extreme products of galaxy evolution and extreme environments in which to test our understanding of star formation. In this work, we contrast the spatially resolved star formation activity of a sample of 22 Hi-selected UDGs and 35 low-mass galaxies from the NASA Sloan Atlas (NSA) catalog within 120 Mpc. We employ a new joint spectral energy distribution fitting method to compute star formation rate and stellar mass surface density maps that leverage the high spatial resolution optical imaging data of the Hyper Suprime-Cam Subaru Strategic Program and the UV coverage of the Galaxy Evolution Explorer, along with Hiradial profiles estimated from a subset of galaxies that have spatially resolved Himaps. We find that UDGs have low star formation efficiencies as a function of their atomic gas down to scales of 500 pc. We additionally find that the stellar mass-weighted sizes of our UDG sample are unremarkable when considered as a function of their Himass—their stellar sizes are comparable to NSA dwarfs at fixed Himass. This is a natural result in the picture where UDGs are forming stars normally, but at low efficiencies. We compare our results to predictions from contemporary models of galaxy formation, and find in particular that our observations are difficult to reproduce in models where UDGs undergo stellar expansion due to vigorous star formation feedback should bursty star formation be required down toz= 0.more » « less
-
null (Ed.)ABSTRACT Gravitational wave (GW) observatories are discovering binary neutron star mergers (BNSMs), and in at least one event we were able to track it down in multiple wavelengths of light, which allowed us to identify the host galaxy. Using a catalogue of local galaxies with inferred star formation histories and adopting a BNSM delay time distribution (DTD) model, we investigate the dependence of BNSM rate on an array of galaxy properties. Compared to the intrinsic property distribution of galaxies, that of BNSM host galaxies is skewed towards galaxies with redder colour, lower specific star formation rate, higher luminosity, and higher stellar mass, reflecting the tendency of higher BNSM rates in more massive galaxies. We introduce a formalism to efficiently make forecast on using host galaxy properties to constrain DTD models. We find comparable constraints from the dependence of BNSM occurrence distribution on galaxy colour, specific star formation rate, and stellar mass, all better than those from dependence on r-band luminosity. The tightest constraints come from using individual star formation histories of host galaxies, which reduces the uncertainties on DTD parameters by a factor of three or more. Substantially different DTD models can be differentiated with about 10 BNSM detections. To constrain DTD parameters at 10 per cent precision level requires about one hundred detections, achievable with GW observations on a decade time-scale.more » « less
An official website of the United States government
