Precious metals have been shown to play a vital role in the selective hydrogenation of α,β-unsaturated aldehydes, but still suffer from challenges to control selectivity. Herein, we have advanced the design of catalysts made out of Pt–Co intermetallic nanoparticles (IMNs) supported on a MIL-101(Cr) MOF (3%Pt y %Co/MIL-101(Cr)), prepared by using a polyol reduction method, as an effective approach to enhance selectivity toward the production of α,β-unsaturated alcohol, the desired product. XRD, N 2 adsorption–desorption, FTIR spectroscopy, SEM, TEM, XPS, CO adsorption, NH 3 -TPD, XANES and EXAFS measurements were used to investigate the structure and surface properties of our 3%Pt y %Co/MIL-101(Cr) catalysts. It was found that the Co-modified 3%Pt y %Co/MIL-101(Cr) catalysts can indeed improve the hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (COL), reaching a higher selectivity under mild conditions than the monometallic Pt/MIL-101(Cr) catalysts: 95% conversion of CAL with 91% selectivity to COL can be reached with 3%Pt3%Co/MIL-101(Cr). Additionally, high conversion of furfural (97%) along with high selectivity to furfural alcohol (94%) was also attained with the 3%Pt3%Co/MIL-101(Cr) catalyst. The enhanced activity and selectivity toward the unsaturated alcohols are attributed to the electronic and geometric effects derived from the partial charge transfer between Co and Pt through the formation of uniformly dispersed Pt–Co IMNs. Moreover, various characterization results revealed that the addition of Co to the IMPs can promote the Lewis acid sites that facilitate the polarization of the charge-rich CO bonds and their adsorption via their oxygen atom, and also generate new interfacial acid sites.
more »
« less
PtCo/MWCNTs Prepared by a Microwave‐assisted Polyol Method for Selective Cinnamaldehyde Hydrogenation
Abstract Using microwave irradiation, PtCo alloy nanoparticles were deposited within a few minutes on COOH‐functionalized MWCNT supports. The obtained catalysts were used for selective hydrogenation of cinnamaldehyde, a reaction whose products are widely used in various fields. In the selective cinnamaldehyde hydrogenation to cinnamyl alcohol, microwave‐prepared catalysts (generically, PtxCoy‐MW) outperformed a catalyst prepared by the conventional method (Pt1Co2‐con). The highest selective hydrogenation to cinnamyl alcohol, 89%, was obtained using Pt1Co2‐MW, while Pt1Co2‐con showed a selectivity of 76%. Characterization results confirmed that the microwave prepared samples had a stronger interaction between Pt and Co than that in the Pt1Co2‐con sample. The alloyed Co altered the electronic structure of Pt, leading to favorable adsorption of the C=O bond by the lone‐pair electrons of its oxygen atom. Moreover, the Pt1Co2‐MW sample showed neglectable change in catalytic performance (e. g., cinnamaldehyde conversion and selective hydrogenation to cinnamyl alcohol) during recycling experiments.
more »
« less
- Award ID(s):
- 2306177
- PAR ID:
- 10432914
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemNanoMat
- Volume:
- 9
- Issue:
- 9
- ISSN:
- 2199-692X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Phosphonic acid (PA) self‐assembled monolayers (SAMs) were deposited onto Pt/Al2O3catalysts to modify the support to enable control over CO2adsorption and CO2hydrogenation activity. Significant differences in catalytic activity toward CO2hydrogenation (reverse water‐gas shift, RWGS) were observed after coating Al2O3with PAs, suggesting that the reaction was mediated by CO2adsorption on the support. Amine‐functionalized PAs were found to outperform their alkyl counterparts in terms of activity, however there was little effect of amine location in the SAM (i. e., spacing between the amine functional group and phosphonate attachment group). One amine‐PA and one alkyl‐PA, aminopropyl phosphonic acid (C3NH2PA) and methyl phosphonic acid (C1PA), respectively, were investigated in more detail. The C3NH2PA‐modified catalyst was found to bind CO2as a combination of carbamate and bicarbonate. Additionally, at 30 °C, both PAs were found to reduce CO2adsorption uptake by approximately 50 % compared to unmodified 5 %Pt/Al2O3. CO2adsorption enthalpy was measured for the catalysts and found to be strongly correlated with hydrogenation activity, with the trend in binding enthalpy and CO2hydrogen rate trending as uncoated >C3NH2PA>C1PA. PA SAMs were found to have weaker effects on CO binding and CO selectivity, consistent with selective modification of the Al2O3support by the PAs.more » « less
-
Abstract Dinuclear manganese hydride complexes of the form [Mn2(CO)8(μ‐H)(μ‐PR2)] (R=Ph,1; R=iPr,2) were used inE‐selective alkyne semi‐hydrogenation (E‐SASH) catalysis. Catalyst speciation studies revealed rich coordination chemistry and the complexes thus formed were isolated and in turn tested as catalysts; the results underscore the importance of dinuclearity in engendering the observedE‐selectivity and provide insights into the nature of the active catalyst. The insertion product obtained from treating2with (cyclopropylethynyl)benzene contains acis‐alkenyl bridging ligand with the cyclopropyl ring being intact. Treatment of this complex with H2affords exclusivelytrans‐(2‐cyclopropylvinyl)benzene. These results, in addition to other control experiments, indicate a non‐radical mechanism forE‐SASH, which is highly unusual for Mn−H catalysts. The catalytically active species are virtually inactive towardscistotransalkene isomerization indicating that theE‐selective process is intrinsic and dinuclear complexes play a critical role. A reaction mechanism is proposed accounting for the observed reactivity which is fully consistent with a kinetic analysis of the rate limiting step and is further supported by DFT computations.more » « less
-
In this work, a Pt catalyst supported on an equimolar Al 2 O 3 –CeO 2 binary oxide (Pt–Al–Ce) was prepared and applied in photo-thermo-chemical dry reforming of methane (DRM) driven by concentrated solar irradiation. It was found that the Pt–Al–Ce catalyst showed good stability in DRM reactions and significant enhancements in H 2 and CO production rates compared with Pt/CeO 2 (Pt–Ce) and Pt/Al 2 O 3 (Pt–Al) catalysts. At a reaction temperature of 700 °C under 30-sun equivalent solar irradiation, the Pt–Al–Ce catalyst exhibits a stable DRM catalytic performance at a H 2 production rate of 657 mmol g −1 h −1 and a CO production rate of 666 mmol g −1 h −1 , with the H 2 /CO ratio almost equal to unity. These production rates and the H 2 /CO ratio were significantly higher than those obtained in the dark at the same temperature. The light irradiation was found to induce photocatalytic activities on Pt–Al–Ce and reduce the reaction activation energy. In situ diffuse reflectance infrared Fourier transform spectroscopy ( in situ DRIFTS) was applied to identify the active intermediates in the photo-thermo-chemical DRM process, which were bidentate/monodentate carbonate, absorbed CO on Pt, and formate. The benefits of the binary Al 2 O 3 –CeO 2 substrate could be ascribed to Al 2 O 3 promoting methane dissociation while CeO 2 stabilized and eliminated possible coke formation, leading to high catalytic DRM activity and stability.more » « less
-
Abstract Encapsulation of metal nanoparticles within oxide materials has been shown as an effective strategy to improve activity, selectivity, and stability in several catalytic applications. Several approaches have been proposed to encapsulate nanoparticles, such as forming core‐shell structures, growing ordered structures (zeolites or metal‐organic frameworks) on nanoparticles, or directly depositing support materials on nanoparticles. Here, a general nanocasting method is demonstrated that can produce diverse encapsulated metal@oxide structures with different compositions (Pt, Pd, Rh) and multiple types of oxides (Al2O3, Al2O3‐CeO2, ZrO2, ZnZrOx, In2O3, Mn2O3, TiO2) while controlling the size and dispersion of nanoparticles and the porous structure of the oxide. Metal@polymer structures are first prepared, and then the oxide precursor is infiltrated into such structures and the resulting material is calcined to form the metal@oxide structures. Most Pt@oxides catalysts show similar catalytic activity, demonstrating the availability of surface Pt sites in the encapsulated structures. However, the Pt@Mn2O3sample showed much higher CO oxidation activity, while also being stable under aging conditions. This work demonstrated a robust nanocasting method to synthesize metal@oxide structures, which can be utilized in catalysis to finely tune metal‐oxide interfaces.more » « less
An official website of the United States government
