skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring Challenges and Opportunities to Support Designers in Learning to Co-create with AI-based Manufacturing Design Tools
AI-based design tools are proliferating in professional software to assist engineering and industrial designers in complex manufacturing and design tasks. These tools take on more agentic roles than traditional computer-aided design tools and are often portrayed as “co-creators.” Yet, working effectively with such systems requires different skills than working with complex CAD tools alone. To date, we know little about how engineering designers learn to work with AI-based design tools. In this study, we observed trained designers as they learned to work with two AI-based tools on a realistic design task. We find that designers face many challenges in learning to effectively co-create with current systems, including challenges in understanding and adjusting AI outputs and in communicating their design goals. Based on our findings, we highlight several design opportunities to better support designer-AI co-creation.  more » « less
Award ID(s):
2118924
PAR ID:
10433002
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
CHI '23: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems
Page Range / eLocation ID:
1 to 20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite the potential of generative AI (GenAI) design tools to enhance design processes, professionals often struggle to integrate AI into their workflows. Fundamental cognitive challenges include the need to specify all design criteria as distinct parameters upfront (intent formulation) and designers' reduced cognitive involvement in the design process due to cognitive offloading, which can lead to insufficient problem exploration, underspecification, and limited ability to evaluate outcomes. Motivated by these challenges, we envision novel metacognitive support agents that assist designers in working more reflectively with GenAI. To explore this vision, we conducted exploratory prototyping through a Wizard of Oz elicitation study with 20 mechanical designers probing multiple metacognitive support strategies. We found that agent-supported users created more feasible designs than non-supported users, with differing impacts between support strategies. Based on these findings, we discuss opportunities and tradeoffs of metacognitive support agents and considerations for future AI-based design tools. 
    more » « less
  2. Generative AI has enabled novice designers to quickly create professional-looking visual representations for product concepts. However, novices have limited domain knowledge that could constrain their ability to write prompts that effectively explore a product design space. To understand how experts explore and communicate about design spaces, we conducted a formative study with 12 experienced product designers and found that experts — and their less-versed clients — often use visual references to guide co-design discussions rather than written descriptions. These insights inspired DesignWeaver, an interface that helps novices generate prompts for a text-to-image model by surfacing key product design dimensions from generated images into a palette for quick selection. In a study with 52 novices, DesignWeaver enabled participants to craft longer prompts with more domain-specific vocabularies, resulting in more diverse, innovative product designs. However, the nuanced prompts heightened participants’ expectations beyond what current text-to-image models could deliver. We discuss implications for AI-based product design support tools. 
    more » « less
  3. PurposeChallenges in teaching the engineering design process (EDP) at the high-school level, such as promoting good documentation practices, are well-documented. While developments in educational artificial intelligence (AI) systems have the potential to assist in addressing these challenges, the open-ended nature of the EDP leads to challenges that often lack the specificity required for actionable AI development. In addition, conventional educational AI systems (e.g. intelligent tutoring systems) primarily target procedural domain tasks with well-defined outcomes and problem-solving strategies, while the EDP involves open-ended problems and multiple correct solutions, making AI intervention timing and appropriateness complex. Design/methodology/approachAuthors conducted a six-week-long Research through Co-Design (RtCD) process (i.e. a co-design process rooted in Research through Design) with two experienced high-school engineering teachers to co-construct actionable insight in the form of AI intervention points (AI-IPs) in engineering education where an AI system can effectively intervene to support them while highlighting their pedagogical practices. FindingsThis paper leveraged the design of task models to iteratively refine our prior understanding of teachers’ experiences with teaching the EDP into three AI-IPs related to documentation, ephemeral interactions between teachers and students and disruptive failures that can serve as a focus for intelligent educational system designs. Originality/valueThis paper discusses the implications of these AI-IPs for designing educational AI systems to support engineering education as well as the importance of leveraging RtCD methodologies to engage teachers in developing intelligent educational systems that align with their needs and afford them control over computational interventions in their classrooms. 
    more » « less
  4. Engineering designers often span knowledge boundaries when developing complex systems but doing so poses challenges because members of different knowledge groups must bridge their language, cognitions, and “thought worlds” to effectively broker, resituate, and make use of each other’s ideas. Objects— ranging from prototypes to kanban boards to value stream maps—are frequently used in cross-functional design practice, but the outcomes associated with such objects appear varied and dependent not only the objects’ characteristics but on how, when, and by whom they are used. This paper describes a two-year inductive ethnographic study within a turbomachinery design company to understand how cross-functional design teams span their knowledge boundaries to advance their designs and design processes. We collected observations of 70 cross-functional meetings and 52 interviews across functional groups during the development of complex turbomachinery products. Our findings include three roles of objects of collaboration: routinizing cross- boundary interaction, translating information across boundaries, and motivating joint negotiation or discovery. We found two prominent outcomes—co-discovery of a design risk, opportunity, or workflow bottleneck and co-design of a joint integrated solution— that appeared to follow from the latter two roles, respectively. These findings are significant because they clarify the roles of objects in cross-boundary design work and suggest ways for designers to more effectively use objects to span knowledge boundaries. 
    more » « less
  5. Generative, ML-driven interactive systems have the potential to change how people interact with computers in creative processes - turning tools into co-creators. However, it is still unclear how we might achieve effective human-AI collaboration in open-ended task domains. There are several known challenges around communication in the interaction with ML-driven systems. An overlooked aspect in the design of co-creative systems is how users can be better supported in learning to collaborate with such systems. Here we reframe human-AI collaboration as a learning problem: Inspired by research on team learning, we hypothesize that similar learning strategies that apply to human-human teams might also increase the collaboration effectiveness and quality of humans working with co-creative generative systems. In this position paper, we aim to promote team learning as a lens for designing more effective co-creative human-AI collaboration and emphasize collaboration process quality as a goal for co-creative systems. Furthermore, we outline a preliminary schematic framework for embedding team learning support in co-creative AI systems. We conclude by proposing a research agenda and posing open questions for further study on supporting people in learning to collaborate with generative AI systems. 
    more » « less