skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Halogen-bonded co-crystal containing 1,3-diiodoperchlorobenzene and the photoproduct rtct -tetrakis(pyridin-4-yl)cyclobutane resulting in a zigzag topology
The formation and crystal structure of a zigzag network held together by I...N halogen bonds is reported. In particular, the halogen-bond donor is 1,3-diiodoperchlorobenzene ( C 6 I 2 Cl 4 ) while the acceptor is the photoproduct rtct -tetrakis(pyridin-4-yl)cyclobutane ( TPCB ). Curiously, within the resulting co-crystal ( C 6 I 2 Cl 4 )·( TPCB ), the photoproduct accepts only two halogen bonds between neighbouring 4-pyridyl rings and as a result behaves as a bent two-connected node rather than the expected four-connected centre. In addition, the photoproduct, TPCB , is also found to engage in C—H...N hydrogen bonds, forming an extended zigzag chain.  more » « less
Award ID(s):
2117129
PAR ID:
10433054
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Acta Crystallographica Section E Crystallographic Communications
Volume:
79
Issue:
3
ISSN:
2056-9890
Page Range / eLocation ID:
212 to 215
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The formation of a photoreactive cocrystal based upon 1,2-diiodoperchlorobenzene ( 1,2-C 6 I 2 Cl 4 ) and trans -1,2-bis(pyridin-4-yl)ethylene ( BPE ) has been achieved. The resulting cocrystal, 2( 1,2-C 6 I 2 Cl 4 )·( BPE ) or C 6 Cl 4 I 2 ·0.5C 12 H 10 N 2 , comprises planar sheets of the components held together by the combination of I...N halogen bonds and halogen–halogen contacts. Notably, the 1,2-C 6 I 2 Cl 4 molecules π-stack in a homogeneous and face-to-face orientation that results in an infinite column of the halogen-bond donor. As a consequence of this stacking arrangement and I...N halogen bonds, molecules of BPE also stack in this type of pattern. In particular, neighbouring ethylene groups in BPE are found to be parallel and within the accepted distance for a photoreaction. Upon exposure to ultraviolet light, the cocrystal undergoes a solid-state [2 + 2] cycloaddition reaction that produces rctt -tetrakis(pyridin-4-yl)cyclobutane ( TPCB ) with an overall yield of 89%. A solvent-free approach utilizing dry vortex grinding of the components also resulted in a photoreactive material with a similar yield. 
    more » « less
  2. The rapid evaporation of 1:1 solutions of diethynylpyridines and N -halosuccinimides, that react together to form haloalkynes, led to the isolation of unreacted 1:1 cocrystals of the two components. The 1:1 cocrystal formed between 2,6-diethynylpyridine and N -iodosuccinimide (C 4 H 4 INO 2 ·C 9 H 5 N) contains an N -iodosuccinimide–pyridine I...N halogen bond and two terminal alkyne–succinimide carbonyl C—H...O hydrogen bonds. The three-dimensional extended structure features interwoven double-stranded supramolecular polymers that are interconnected through halogen bonds. The cocrystal formed between 3,5-diethynylpyridine and N -iodosuccinimide (C 4 H 4 INO 2 ·C 9 H 5 N) also features an I...N halogen bond and two C—H...O hydrogen bonds. However, the components form essentially planar double-stranded one-dimensional zigzag supramolecular polymers. The cocrystal formed between 3,5-diethynylpyridine and N -bromosuccinimide (C 4 H 4 BrNO 2 ·C 9 H 5 N) is isomorphous to the cocrystal formed between 3,5-diethynylpyridine and N -iodosuccinimide, with a Br...N halogen bond instead of an I...N halogen bond. 
    more » « less
  3. The structures of a series of 2:1 cocrystals formed between 4-(dimethylamino)pyridine and each of 1,2,4,5-tetrachloro-3,6-diiodobenzene, 2C7H10N2·C6Cl4I2, 1,2,4,5-tetrabromo-3,6-diiodobenzene, 2C7H10N2·C6Br4I2, 1-bromo-4-iodo-2,3,5,6-tetrafluorobenzene, 2C7H10N2·C6BrF4I, and 1,2-dibromo-4,5-difluoro-3,6-diiodobenzene, 2C7H10N2·C6Br2F2I2, are reported. In all five structures, the core halogen-bonded 2:1 trimolecular units have geometrically similar parameters, with the central halogen-bond donor flanked by two pyridine halogen-bond acceptors twisted with respect to the central halogen-bond donor at angles ranging from 76 to 86°. The I...N halogen-bond separations are all short, ranging from 73.3 to 76.7% of the sum of the van der Waals radii, while the C—I...N bond angles are essentially linear. The Br...N halogen-bond separation in the cocrystal formed with 1-bromo-4-iodo-2,3,5,6-tetrafluorobenzene is 80.4% of the sum of the van der Waals radii. Subtle differences in the crystal packings are attributed to the role of secondary C—H...π and weak π-type interactions with chloro and bromo substituents. The cocrystals 2C7H10N2·C6Cl4I2and 2C7H10N2·C6Br4I2are isomorphous. 
    more » « less
  4. null (Ed.)
    The halogen-bond (X-bond) donors 1,3- and 1,4-diiodotetrafluorobenzene (1,3-di-I-tFb and 1,4-di-I-tFb, respectively) form cocrystals with trans-1,2-bis(2-pyridyl)ethylene (2,2′-bpe) assembled by N···I X-bonds. In each cocrystal, 2(1,3-di-I-tFb)·2(2,2′-bpe) and (1,4-di-I-tFb)·(2,2′-bpe), the donor molecules support the C=C bonds of 2,2′-bpe to undergo an intermolecular [2+2] photodimerization. UV irradiation of each cocrystal resulted in stereospecific and quantitative conversion of 2,2′-bpe to rctt-tetrakis(2-pyridyl)cyclobutane (2,2′-tpcb). In each case, the reactivity occurs via face-to-face π-stacked columns wherein nearest-neighbor pairs of 2,2′-bpe molecules lie sandwiched between X-bond donor molecules. Nearest-neighbor C=C bonds are stacked criss-crossed in both cocrystals. The reactivity was ascribed to the olefins undergoing pedal-like motion in the solid state. The stereochemistry of 2,2′-tpcb is confirmed in cocrystals 2(1,3-di-I-tFb)·(2,2′-tpcb) and (1,4-di-I-tFb)·(2,2′-tpcb). 
    more » « less
  5. The realization of a pair of photoreactive polymorphic co-crystals that are held together by the combination of I⋯N halogen bonding interactions and C–H⋯Cl contacts is reported. The reactant molecule within these co-crystals is based upon an unsymmetrical olefin, namely 4-stilbazole, that results in a regioselective solid-state [2 + 2] cycloaddition reaction in both polymorphic forms. Each solid undergoes a quantitative photoreaction which yields exclusively the head-to-tail photoproduct. 
    more » « less