skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bridging the crystal and solution structure of a series of lipid-inspired ionic liquids
A series of 1,2-dimethylimidazolium ionic liquids bearing a hexadecyl alkyl chain are thoroughly examined via X-ray crystallography. The crystal structures reveal several key variations in the non-covalent interactions in the lipid-like salts. Specifically, distinct cation–cation π interactions are observed when comparing the bromide and iodide structures. Changing the anion to bis(trifluoromethane)sulfonimide (Tf 2 N − ) changes these cation–cation π interactions with anion⋯π interactions. Additionally, several well-defined geometries of the cations are noted based on torsion and core-plane angles of the alkyl chains. Hirshfeld surface analysis is used to distinguish the interactions and geometries in the solid state, helping to reveal characteristic structural fingerprints for the compounds. The solid-state structures of the ionic liquids are correlated with the solution-state structures through UV-vis spectroscopic studies, further emphasizing the importance of the π interactions in the formation of aggregates. Finally, we investigated the thermal properties of the ionic liquids, revealing complex phase transitions for the iodide-containing species. These phase transitions are further rationalized via the analysis of the data gathered from the structures of the other crystallized salts.  more » « less
Award ID(s):
1952846 2244980
PAR ID:
10433124
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
19
Issue:
4
ISSN:
1744-683X
Page Range / eLocation ID:
749 to 765
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Two crystals incorporating the thiamine·HCl cation and the fluorinated anion 1,3-disulfonylhexafluoropropyleneimide have been characterized via single-crystal X-ray diffraction. The host-guest interactions of thiamine with the anions are analyzed and characterized using Hirshfeld surface analysis. The cations in both structures form a dimer in the solid-state via reciprocal hydrogen bonding through the amine and hydroxyl moieties. Additional investigation into the interactions responsible for dimer formation found that the sulfur atom in the thiazolium ring interacting with several hydrogen atoms to form stabilizing interactions. These interactions in the dimer are further analyzed using reduced density gradient analysis and the results are correlated to the fingerprint plots derived from the Hirshfeld surfaces. Moreover, specific interactions are observed from the cyclical anions, with both the fluorine and sulfonyl oxygen atoms participating in bridging interactions, displaying the diverse host-guest properties of thiamine. 
    more » « less
  2. Abstract The electron-induced secondary electron emission (SEE) yields of imidazolium-based ionic liquids are presented for primary electron beam energies between 30 and 1000 eV. These results are important for understanding plasma synthesis of nanoparticles in plasma discharges with an ionic liquid electrode. Due to their low vapor pressure and high conductivity, ionic liquids can produce metal nanoparticles in low-pressure plasmas through reduction of dissolved metal salts. In this work, the low vapor pressure of ionic liquids is exploited to directly measure SEE yields by bombarding the liquid with electrons and measuring the resulting currents. The ionic liquids studied are [BMIM][Ac], [EMIM][Ac], and [BMIM][BF4]. The SEE yields vary significantly over the energy range, with maximum yields of around 2 at 200 eV for [BMIM][Ac] and [EMIM][Ac], and 1.8 at 250 eV for [BMIM][BF4]. Molecular orbital calculations indicate that the acetate anion is the likely electron donor for [BMIM][Ac] and [EMIM][Ac], while in [BMIM][BF4], the electrons likely originate from the [BMIM]+cation. The differences in SEE yields are attributed to varying ionization potentials and molecular structures of the ionic liquids. These findings are essential for accurate modeling of plasma discharges and understanding SEE mechanisms in ionic liquids. 
    more » « less
  3. null (Ed.)
    Imidazolium-based cations and the hexafluorophosphate anion are among the most commonly used ionic liquids (ILs). Yet, the nature and strength of the intrinsic cation–anion interactions, and how they influence the macroscopic properties of these ILs are still not well understood. Threshold collision-induced dissociation is utilized to determine the bond dissociation energies (BDEs) of the 2 : 1 clusters of 1-alkyl-3-methylimidazolium cations and the hexafluorophosphate anion, [2C n mim:PF 6 ] + . The cation, [C n mim] + , is varied across the series, 1-ethyl-3-methylimidazolium [C 2 mim] + , 1-butyl-3-methylimidazolium [C 4 mim] + , 1-hexyl-3-methylimidazolium [C 6 mim] + , 1-octyl-3-methylimidazolium [C 8 mim] + , to examine the structural and energetic effects of the size of the 1-alkyl substituent of the cation on the binding to [PF 6 ] − . Complementary electronic structure methods are employed for the [C n mim] + cations, (C n mim:PF 6 ) ion pairs, and [2C n mim:PF 6 ] + clusters to elucidate details of the cation–anion interactions and their impact on structure and energetics. Multiple levels of theory are benchmarked with the measured BDEs including B3LYP, B3LYP-GD3BJ, and M06-2X each with the 6-311+G(d,p) basis set for geometry optimizations and frequency analyses and the 6-311+G(2d,2p) basis set for energetic determinations. The modest structural variation among the [C n mim] + cations produces only minor structural changes and variation in the measured BDEs of the [2C n mim:PF 6 ] + clusters. Present results are compared to those previously reported for the analogous 1-alkyl-3-methylimidazolium tetrafluoroborate IL clusters to compare the effects of these anions on the nature and strength of the intrinsic binding interactions. 
    more » « less
  4. ABSTRACT Biomimetic designs are inspired by the complex and unique behavior of naturally occurring materials, and can be applied to many systems, including polymers. ZIPer polymers (Zwitter arene‐ion like polymer) are inspired by byssal threads found on mussels, and their physical state is highly sensitive to various environmental conditions. Specifically, the ZIPer polymer undergoes chemospecific phase transitions, exhibiting potential for its use as an ionic responsive technology. Though this phenomenon has been observed with Raman spectroscopy, little is known about how salt identity or concentration affect polymer inter‐ and intra‐chain interactions. Previous studies have used Raman spectroscopy to analyze ZIPer polymer behavior in the presence of salt; however, the effect is typically only observed with sodium chloride and often only compares spectra at two concentrations. Additionally, studies have mainly focused on the spectral evidence of cation–π interactions, significantly narrowing their spectral range. In order to develop a more predictive framework for ZIPer polymer behavior, a range of salt identities and concentrations need to be tested. This study uses Raman spectroscopy to investigate ZIPer polymer behavior in the presence of a series of salts, namely NaCl, NaOTFA, NaBr, NaBF4, and NaPF6, each at 0.1 M, 0.5 M, 1.0 M, and 1.5 M concentrations. Moreover, we observe spectral changes in a range from 550 to 2000 cm−1. Spectral evidence suggests that the cation–π interactions previously hypothesized to be the driver of ZIPer polymer behavior are not the only mechanism determining the chemoresponsive phase transitions. We hypothesize that cation–π interactions and dispersion forces are competing mechanisms controlling ZIPer polymer behavior. Furthermore, we suggest that at certain concentrations the dominating mechanism transitions, and this inflection point is salt identity dependent. 
    more » « less
  5. null (Ed.)
    Ionic liquids (ILs) exhibit unique properties that have led to their development and widespread use for a variety of applications. Development efforts have generally focused on achieving desired macroscopic properties via tuning of the IL through variation of the cations and anions. Both the macroscopic and microscopic properties of an IL influence its tunability and thus feasibility of use for selected applications. Works geared toward a microscopic understanding of the nature and strength of the intrinsic cation-anion interactions of ILs have been limited to date. Specifically, the intrinsic strength of the cation-anion interactions in ILs is largely unknown. In previous work, we employed threshold collision-induced dissociation (TCID) approaches supported and enhanced by electronic structure calculations to determine the bond dissociation energies (BDEs) and characterize the nature of the cation-anion interactions in a series of four 2:1 clusters of 1-alkyl-3-methylimidazolium cations with the hexafluorophosphate anion, [2C n mim:PF 6 ] + . To examine the effects of the 1-alkyl chain on the structure and energetics of binding, the cation was varied over the series: 1-ethyl-3-methylimidazolium, [C 2 mim] + , 1-butyl-3-methylimidazolium, [C 4 mim] + , 1-hexyl-3-methylimidazolium, [C 6 mim] + , and 1-octyl-3-methylimidazolium, [C 8 mim] + . The variation in the strength of binding among these [2C n mim:PF 6 ] + clusters was found to be similar in magnitude to the average experimental uncertainty in the measurements. To definitively establish an absolute order of binding among these [2C n mim:PF 6 ] + clusters, we extend this work again using TCID and electronic structure theory approaches to include competitive binding studies of three mixed 2:1 clusters of 1-alkyl-3-methylimidazolium cations and the hexafluorophosphate anion, [C n-2 mim:PF 6 :C n mim] + for n = 4, 6, and 8. The absolute BDEs of these mixed [C n-2 mim:PF 6 :C n mim] + clusters as well as the absolute difference in the strength of the intrinsic binding interactions as a function of the cation are determined with significantly improved precision. By combining the thermochemical results of the previous independent and present competitive measurements, the BDEs of the [2C n mim:PF 6 ] + clusters are both more accurately and more precisely determined. Comparisons are made to results for the analogous [2C n mim:BF 4 ] + and [C n-2 mim:PF 6 :C n mim] + clusters previously examined to elucidate the effects of the [PF 6 ] - and [BF 4 ] - anions on the binding. 
    more » « less