skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Bridging the crystal and solution structure of a series of lipid-inspired ionic liquids
A series of 1,2-dimethylimidazolium ionic liquids bearing a hexadecyl alkyl chain are thoroughly examined via X-ray crystallography. The crystal structures reveal several key variations in the non-covalent interactions in the lipid-like salts. Specifically, distinct cation–cation π interactions are observed when comparing the bromide and iodide structures. Changing the anion to bis(trifluoromethane)sulfonimide (Tf 2 N − ) changes these cation–cation π interactions with anion⋯π interactions. Additionally, several well-defined geometries of the cations are noted based on torsion and core-plane angles of the alkyl chains. Hirshfeld surface analysis is used to distinguish the interactions and geometries in the solid state, helping to reveal characteristic structural fingerprints for the compounds. The solid-state structures of the ionic liquids are correlated with the solution-state structures through UV-vis spectroscopic studies, further emphasizing the importance of the π interactions in the formation of aggregates. Finally, we investigated the thermal properties of the ionic liquids, revealing complex phase transitions for the iodide-containing species. These phase transitions are further rationalized via the analysis of the data gathered from the structures of the other crystallized salts.  more » « less
Award ID(s):
1952846 2244980
PAR ID:
10433124
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
19
Issue:
4
ISSN:
1744-683X
Page Range / eLocation ID:
749 to 765
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Two crystals incorporating the thiamine·HCl cation and the fluorinated anion 1,3-disulfonylhexafluoropropyleneimide have been characterized via single-crystal X-ray diffraction. The host-guest interactions of thiamine with the anions are analyzed and characterized using Hirshfeld surface analysis. The cations in both structures form a dimer in the solid-state via reciprocal hydrogen bonding through the amine and hydroxyl moieties. Additional investigation into the interactions responsible for dimer formation found that the sulfur atom in the thiazolium ring interacting with several hydrogen atoms to form stabilizing interactions. These interactions in the dimer are further analyzed using reduced density gradient analysis and the results are correlated to the fingerprint plots derived from the Hirshfeld surfaces. Moreover, specific interactions are observed from the cyclical anions, with both the fluorine and sulfonyl oxygen atoms participating in bridging interactions, displaying the diverse host-guest properties of thiamine. 
    more » « less
  2. null (Ed.)
    Imidazolium-based cations and the hexafluorophosphate anion are among the most commonly used ionic liquids (ILs). Yet, the nature and strength of the intrinsic cation–anion interactions, and how they influence the macroscopic properties of these ILs are still not well understood. Threshold collision-induced dissociation is utilized to determine the bond dissociation energies (BDEs) of the 2 : 1 clusters of 1-alkyl-3-methylimidazolium cations and the hexafluorophosphate anion, [2C n mim:PF 6 ] + . The cation, [C n mim] + , is varied across the series, 1-ethyl-3-methylimidazolium [C 2 mim] + , 1-butyl-3-methylimidazolium [C 4 mim] + , 1-hexyl-3-methylimidazolium [C 6 mim] + , 1-octyl-3-methylimidazolium [C 8 mim] + , to examine the structural and energetic effects of the size of the 1-alkyl substituent of the cation on the binding to [PF 6 ] − . Complementary electronic structure methods are employed for the [C n mim] + cations, (C n mim:PF 6 ) ion pairs, and [2C n mim:PF 6 ] + clusters to elucidate details of the cation–anion interactions and their impact on structure and energetics. Multiple levels of theory are benchmarked with the measured BDEs including B3LYP, B3LYP-GD3BJ, and M06-2X each with the 6-311+G(d,p) basis set for geometry optimizations and frequency analyses and the 6-311+G(2d,2p) basis set for energetic determinations. The modest structural variation among the [C n mim] + cations produces only minor structural changes and variation in the measured BDEs of the [2C n mim:PF 6 ] + clusters. Present results are compared to those previously reported for the analogous 1-alkyl-3-methylimidazolium tetrafluoroborate IL clusters to compare the effects of these anions on the nature and strength of the intrinsic binding interactions. 
    more » « less
  3. Ionic liquids are currently being considered as potential electrolyte candidates for next-generation batteries and energy storage devices due to their high thermal and chemical stability. However, high viscosity and low conductivity at lower temperatures have severely hampered their commercial applications. To overcome these challenges, it is necessary to develop structure–property models for ionic liquid transport properties to guide the ionic liquid design. This work expands our previous effort in developing a machine learning model on imidazolium-based ionic liquids to now include ten different cation families, representing structural and chemical diversity. The model dataset contains 2869 ionic conductivity values over a temperature range of 238–472 K collected from the NIST ILThermo database and literature values for 397 unique ionic liquids. The database covers 214 unique cations and 68 unique anions. Three machine learning models, namely multiple linear regression, random forest, and extreme gradient boosting are applied to correlate the ionic liquid conductivity data with cation and anion features. Shapely additive analysis is performed to glean insights into cation and anion features with significant impact on ionic conductivity. Finally, the extreme gradient boosting model is used to predict the ionic conductivity of ionic liquids from all the possible combinations of unique cations and anions to identify ionic liquids crossing the ionic conductivity threshold of 2.0 S m −1 . 
    more » « less
  4. null (Ed.)
    Ionic liquids (ILs) exhibit unique properties that have led to their development and widespread use for a variety of applications. Development efforts have generally focused on achieving desired macroscopic properties via tuning of the IL through variation of the cations and anions. Both the macroscopic and microscopic properties of an IL influence its tunability and thus feasibility of use for selected applications. Works geared toward a microscopic understanding of the nature and strength of the intrinsic cation-anion interactions of ILs have been limited to date. Specifically, the intrinsic strength of the cation-anion interactions in ILs is largely unknown. In previous work, we employed threshold collision-induced dissociation (TCID) approaches supported and enhanced by electronic structure calculations to determine the bond dissociation energies (BDEs) and characterize the nature of the cation-anion interactions in a series of four 2:1 clusters of 1-alkyl-3-methylimidazolium cations with the hexafluorophosphate anion, [2C n mim:PF 6 ] + . To examine the effects of the 1-alkyl chain on the structure and energetics of binding, the cation was varied over the series: 1-ethyl-3-methylimidazolium, [C 2 mim] + , 1-butyl-3-methylimidazolium, [C 4 mim] + , 1-hexyl-3-methylimidazolium, [C 6 mim] + , and 1-octyl-3-methylimidazolium, [C 8 mim] + . The variation in the strength of binding among these [2C n mim:PF 6 ] + clusters was found to be similar in magnitude to the average experimental uncertainty in the measurements. To definitively establish an absolute order of binding among these [2C n mim:PF 6 ] + clusters, we extend this work again using TCID and electronic structure theory approaches to include competitive binding studies of three mixed 2:1 clusters of 1-alkyl-3-methylimidazolium cations and the hexafluorophosphate anion, [C n-2 mim:PF 6 :C n mim] + for n = 4, 6, and 8. The absolute BDEs of these mixed [C n-2 mim:PF 6 :C n mim] + clusters as well as the absolute difference in the strength of the intrinsic binding interactions as a function of the cation are determined with significantly improved precision. By combining the thermochemical results of the previous independent and present competitive measurements, the BDEs of the [2C n mim:PF 6 ] + clusters are both more accurately and more precisely determined. Comparisons are made to results for the analogous [2C n mim:BF 4 ] + and [C n-2 mim:PF 6 :C n mim] + clusters previously examined to elucidate the effects of the [PF 6 ] - and [BF 4 ] - anions on the binding. 
    more » « less
  5. The title salt, C 4 H 6 N 3 O 2 + ·Cl − , exhibits multiple hydrogen-bonding interactions involving the nitroimidazolium cation and the chloride anion. Strong hydrogen bonds between the amine hydrogen atom and the chloride anion link the ionic moieties. Of note, with respect to H...Cl interactions, the central aromatic hydrogen atom displays a shorter interaction than the other aromatic hydrogen atom. Finally, interactions are observed between the nitro moiety and methyl H atoms. While no π–π stacking is observed, anion-π interactions are present. The crystal was refined as a two-component twin. 
    more » « less