skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Keeping Secrets: Multi-objective Genetic Improvement for Detecting and Reducing Information Leakage
Information leaks in software can unintentionally reveal private data, yet they are hard to detect and fix. Although several methods have been proposed to detect leakage, such as static verification-based approaches, they require specialist knowledge, and are time-consuming. Recently, we introduced HyperGI, a dynamic, hypertest-based approach that can detect and produce potential fixes for hyperproperty violations. In particular, we focused on violations of the noninterference property, as it results in information flow leakage. Our instantiation of HyperGI was able to detect and reduce leakage in three small programs. Its fitness function tried to balance information leakage and program correctness but, as we pointed out, there may be tradeoffs between keeping program semantics and reducing information leakage that require developer decisions. In this work we ask if it is possible to automatically detect and repair information leakage in more realistic programs without requiring specialist knowledge. We instantiate a multi-objective version of HyperGI in a tool, called LeakReducer, which explicitly encodes the tradeoff between program correctness and information leakage. We apply LeakReducer to six leaky programs, including the well-known Heartbleed bug. LeakReducer is able to detect leakage in all, in contrast to state-of-the-art fuzzers, detecting leakage in only two programs. Moreover, LeakReducer is able to reduce leakage in all subjects, with comparable results to previous work, while scaling to much larger software.  more » « less
Award ID(s):
1909688
PAR ID:
10433132
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 37th IEEE/ACM International Conference on Software Engineering (ASE)
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Scrubbing sensitive data before releasing memory is a widely accepted but often ignored programming practice for developing secure software. Consequently, confidential data such as cryptographic keys, passwords, and personal data, can remain in memory indefinitely, thereby increasing the risk of exposure to hackers who can retrieve the data using memory dumps or exploit vulnerabilities such as Heartbleed and Etherleak. We propose an approach for detecting a specific memory safety bug called Improper Clearing of Heap Memory Before Release, also known as Common Weakness Enumeration 244, in C programs. The CWE-244 bug in a program allows the leakage of confidential information when a variable is not wiped before heap memory is freed. Our approach combines taint analysis and model checking to detect this weakness. We have three main phases: (1) perform a coarse flow-insensitive inter-procedural static analysis on the program to construct a set of pointer variables that could point to sensitive data; (2) instrument the program with required dynamic variable tracking, and assertion logic for memory wiping before deallocation; and (3) invoke a model checker, the C-Bounded Model Checker (CBMC) in our case, to detect assertion violation in the instrumented program. We develop a tool, \toolname, implementing our instrumentation based algorithm, and we provide experimental validation on the Juliet Test Suite --- the tool is able to detect all the CWE-244 instances present in the test suite. To the best of our knowledge, this is the first work which presents a solution to the problem of detecting unscrubbed secure memory deallocation violations in programs. 
    more » « less
  2. Memory safety invariants extracted from a program can help defend and detect against both software and hardware memory violations. For instance, by allowing only specific instructions to access certain memory locations, system can detect out-of-bound or illegal pointer dereferences that lead to correctness and security issues. In this paper, we propose CPU abstractions, called, to specify and check program invariants to provide defense mechanism against both software and hardware memory violations at runtime. ensures that the invariants must be satisfied at every memory accesses. We present a fast invariant address translation and retrieval scheme using a specialized cache. It stores and checks invariants related to global, stack and heap objects. The invariant checks can be performed synchronously or asynchronously. uses synchronous checking for high security-critical programs, while others are protected by asynchronous checking. A fast exception is proposed to alert any violations as soon as possible in order to close the gap for transient attacks. Our evaluation shows that can detect both software and hardware, spatial and temporal memory violations. incurs 53% overhead when checking synchronously, or 15% overhead when checking asynchronously. 
    more » « less
  3. Information leaks are a significant problem in modern software systems. In recent years, information theoretic concepts, such as Shannon entropy, have been applied to quantifying information leaks in programs. One recent approach is to use symbolic execution together with model counting constraints solvers in order to quantify information leakage. There are at least two reasons for unsoundness in quantifying information leakage using this approach: 1) Symbolic execution may not be able to explore all execution paths, 2) Model counting constraints solvers may not be able to provide an exact count. We present a sound symbolic quantitative information flow analysis that bounds the information leakage both for the cases where the program behavior is not fully explored and the model counting constraint solver is unable to provide a precise model count but provides an upper and a lower bound. We implemented our approach as an extension to KLEE for computing sound bounds for information leakage in C programs. 
    more » « less
  4. Recent trends in software-defined networking have extended network programmability to the data plane through programming languages such as P4. Unfortunately, the chance of introducing bugs in the network also increases significantly in this new context. Existing data plane verification approaches are unable to model P4 programs, or they present severe restrictions in the set of properties that can be modeled. In this paper, we introduce a data plane program verification approach based on assertion checking and symbolic execution. Network programmers annotate P4 programs with assertions expressing general security and correctness properties. Once annotated, these programs are transformed into C-based models and all their possible paths are symbolically executed. Results show that the proposed approach, called ASSERT-P4, can uncover a broad range of bugs and software flaws. Furthermore, experimental evaluation shows that it takes less than a minute for verifying various P4 applications proposed in the literature. 
    more » « less
  5. Automated deductive program synthesis promises to generate executable programs from concise specifications, along with proofs of correctness that can be independently verified using third-party tools. However, an attempt to exercise this promise using existing proof-certification frameworks reveals significant discrepancies in how proof derivations are structured for two different purposes: program synthesis and program verification. These discrepancies make it difficult to use certified verifiers to validate synthesis results, forcing one to write an ad-hoc translation procedure from synthesis proofs to correctness proofs for each verification backend. In this work, we address this challenge in the context of the synthesis and verification of heap-manipulating programs. We present a technique for principled translation of deductive synthesis derivations (a.k.a. source proofs) into deductive target proofs about the synthesised programs in the logics of interactive program verifiers. We showcase our technique by implementing three different certifiers for programs generated via SuSLik, a Separation Logic-based tool for automated synthesis of programs with pointers, in foundational verification frameworks embedded in Coq: Hoare Type Theory (HTT), Iris, and Verified Software Toolchain (VST), producing concise and efficient machine-checkable proofs for characteristic synthesis benchmarks. 
    more » « less