Network programmers can currently deploy an arbitrary set of protocols in forwarding devices through data plane programming languages such as P4. However, as any other type of software, P4 programs are subject to bugs and misconfigurations. Network verification tools have been proposed as a means of ensuring that the network behaves as expected, but these tools typically require programmers to manually model P4 programs, are limited in terms of the properties they can guarantee and frequently face severe scalability issues. In this paper, we argue for a novel approach to this problem. Rather than statically inspecting a network configuration looking for bugs, we propose to enforce networking properties at runtime. To this end, we developed P4box, a system for deploying runtime monitors in programmable data planes. Our results show that P4box allows programmers to easily express a broad range of properties. Moreover, we demonstrate that runtime monitors represent a small overhead to network devices in terms of latency and resource consumption.
more »
« less
Uncovering Bugs in P4 Programs with Assertion-based Verification
Recent trends in software-defined networking have extended network programmability to the data plane through programming languages such as P4. Unfortunately, the chance of introducing bugs in the network also increases significantly in this new context. Existing data plane verification approaches are unable to model P4 programs, or they present severe restrictions in the set of properties that can be modeled. In this paper, we introduce a data plane program verification approach based on assertion checking and symbolic execution. Network programmers annotate P4 programs with assertions expressing general security and correctness properties. Once annotated, these programs are transformed into C-based models and all their possible paths are symbolically executed. Results show that the proposed approach, called ASSERT-P4, can uncover a broad range of bugs and software flaws. Furthermore, experimental evaluation shows that it takes less than a minute for verifying various P4 applications proposed in the literature.
more »
« less
- Award ID(s):
- 1740911
- PAR ID:
- 10065496
- Date Published:
- Journal Name:
- Proceedings of the Symposium on SDN Research
- Page Range / eLocation ID:
- 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent trends in software-defined networking have extended network programmability to the data plane. Unfortunately, the chance of introducing bugs increases significantly. Verification can help prevent bugs by assuring that the program does not violate its requirements. Although research on the verification of P4 programs is very active, we still need tools to make easier for programmers to express properties and to rapidly verify complex invariants. In this paper, we leverage assertions and symbolic execution to propose a more general P4 verification approach. Developers annotate P4 programs with assertions expressing general network correctness properties; the result is transformed into C models and all possible paths symbolically executed. We implement a prototype, and use it to show the feasibility of the verification approach. Because symbolic execution does not scale well, we investigate a set of techniques to speed up the process for the specific case of P4 programs. We use the prototype implemented to show the gains provided by three speed up techniques (use of constraints, program slicing, parallelization), and experiment with different compiler optimization choices. We show our tool can uncover a broad range of bugs, and can do it in less than a minute considering various P4 applications.more » « less
-
One of the main roles of the Domain Name System (DNS) is to map domain names to IP addresses. Despite the importance of this function, DNS traffic often passes without being analyzed, thus making the DNS a center of attacks that keep evolving and growing. Software-based mitigation approaches and dedicated state-of-the-art firewalls can become a bottleneck and are subject to saturation attacks, especially in high-speed networks. The emerging P4-programmable data plane can implement a variety of network security mitigation approaches at high-speed rates without disrupting legitimate traffic. This paper describes a system that relies on programmable switches and their stateful processing capabilities to parse and analyze DNS traffic solely in the data plane, and subsequently apply security policies on domains according to the network administrator. In particular, Deep Packet Inspection (DPI) is leveraged to extract the domain name consisting of any number of labels and hence, apply filtering rules (e.g., blocking malicious domains). Evaluation results show that the proposed approach can parse more domain labels than any state-of-the-art P4-based approach. Additionally, a significant performance gain is attained when comparing it to a traditional software firewall -pfsense-, in terms of throughput, delay, and packet loss. The resources occupied by the implemented P4 program are minimal, which allows for more security functionalities to be added.more » « less
-
Software Defined Networking (SDN) and Network Function Virtualization (NFV) are transforming Data Center (DC), Telecom, and enterprise networking. The programmability offered by P4 enables SDN to be more protocol-independent and flexible. Data Centers are increasingly adopting SmartNICs (sNICs) to accelerate packet processing that can be leveraged to support packet processing pipelines and custom Network Functions (NFs). However, there are several challenges in integrating and deploying P4 based SDN control as well as host and sNIC-based programmable NFs. These include configuration and management of the data plane components (Host and sNIC P4 switches) for the SDN control plane and effective utilization of data plane resources. P4NFV addresses these concerns and provides a unified P4 switch abstraction framework to simplify the SDN control plane, reducing management complexities, and leveraging a host-local SDN Agent to improve the overall resource utilization. The SDN agent considers the network-wide, host, and sNIC specific capabilities and constraints. Based on workload and traffic characteristics, P4NFV determines the partitioning of the P4 tables and optimal placement of NFs (P4 actions) to minimize the overall delay and maximize resource utilization. P4NFV uses Mixed Integer Linear Programming (MILP) based optimization formulation and achieves up to 2. 5X increase in system capacity while minimizing the delay experienced by flows. P4NFV considers the number of packet exchanges, flow size, and state dependency to minimize the delay imposed by data transmission over PCI Express interface.more » « less
-
Modern programmable network switches can implement cus- tom applications using efficient packet processing hardware, and the programming language P4 provides high-level con- structs to program such switches. The increase in speed and programmability has inspired research in dataplane program- ming, where many complex functionalities, e.g., key-value stores and load balancers, can be implemented entirely in network switches. However, dataplane programs may suffer from novel security errors that are not traditionally found in network switches. To address this issue, we present a new information-flow control type system for P4. We formalize our type system in a recently-proposed core version of P4, and we prove a sound- ness theorem: well-typed programs satisfy non-interference. We also implement our type system in a tool, P4BID, which extends the type checker in the p4c compiler, the reference compiler for the latest version of P4. We present several case studies showing that natural security, integrity, and isolation properties in networks can be captured by non-interference, and our type system can detect violations of these properties while certifying correct programs.more » « less
An official website of the United States government

