skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: SSD-LM: Semi-autoregressive Simplex-based Diffusion Language Model for Text Generation and Modular Control
Despite the growing success of diffusion models in continuous-valued domains (e.g., images), similar efforts for discrete domains such as text have yet to match the performance of autoregressive language models. In this work, we present SSD-LM—a diffusion-based language model with two key design choices. First, SSD-LM is semi-autoregressive, iteratively generating blocks of text, allowing for flexible output length at decoding time while enabling local bidirectional context updates. Second, it is simplex-based, performing diffusion on the natural vocabulary space rather than a learned latent space, allowing us to incorporate classifier guidance and modular control using off-the-shelf classifiers without any adaptation. We evaluate SSD-LM on unconstrained text generation benchmarks, and show that it matches or outperforms strong autoregressive GPT-2 models across standard quality and diversity metrics, while vastly outperforming diffusion-based baselines. On controlled text generation, SSD-LM also outperforms competitive baselines, with an extra advantage in modularity.  more » « less
Award ID(s):
2142739 2203097 2125201
PAR ID:
10433150
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACL: Annual Meeting of the Association for Computational Linguistics
Page Range / eLocation ID:
11575–11596
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Diffusion-based language models are emerging as a promising alternative to autoregressive LMs: they approach the competence of autoregressive LMs while offering nuanced controllability at inference time. While autoregressive LMs have benefited immensely from scaling and instruction-based learning, existing studies of diffusion LMs have been conducted on a smaller scale. Starting with a recently proposed diffusion model SSD-LM, in this work we first explore methods to scale it from 0.4B to 13B parameters, proposing techniques to improve its training and inference efficiency, and to finetune the model to follow instructions. Armed with a more powerful, general purpose diffusion LM, we introduce the primary contribution of this work – SSD-2 – an approach to easily ensemble at inference time a large general-purpose diffusion LM with smaller, but specialized and contextualized diffusion LMs. We show that SSD-2 facilitates novel ensembles with 100x smaller models that can be customized and deployed by individual users. We find that compared to autoregressive models, the collaboration between diffusion LMs is more effective, leading to higher-quality model responses due to their ability to dynamically incorporate bi-directional contexts. 
    more » « less
  2. Large pretrained language models are successful at generating fluent text but are notoriously hard to controllably sample from. In this work, we study constrained sampling from such language models, i.e., generating text that satisfies user-defined constraints, while maintaining fluency and model’s performance in a downstream task. We propose MuCoLa—a sampling procedure that combines the log-likelihood of the language model with arbitrary (differentiable) constraints in a single energy function, and then generates samples in a non-autoregressive manner. Specifically, it initializes the entire output sequence with noise and follows a Markov chain defined by Langevin Dynamics using the gradients of this energy. We evaluate MuCoLa on text generation with soft and hard constraints as well as their combinations, obtaining significant improvements over competitive baselines for toxicity avoidance, sentiment control, and keyword-guided generation. 
    more » « less
  3. Language model (LM) prompting—a popular paradigm for solving NLP tasks—has been shown to be susceptible to miscalibration and brittleness to slight prompt variations, caused by its discriminative prompting approach, i.e., predicting the label given the input. To address these issues, we propose Gen-Z—a generative prompting framework for zero-shot text classification. GEN-Z is generative, as it measures the LM likelihood of input text, conditioned on natural language descriptions of labels. The framework is multivariate, as label descriptions allow us to seamlessly integrate additional contextual information about the labels to improve task performance. On various standard classification benchmarks, with six open-source LM families, we show that zero-shot classification with simple contextualization of the data source of the evaluation set consistently outperforms both zero-shot and few-shot baselines while improving robustness to prompt variations. Further, our approach enables personalizing classification in a zero-shot manner by incorporating author, subject, or reader information in the label descriptions. 
    more » « less
  4. Language model (LM) pretraining can learn various knowledge from text corpora, helping downstream tasks. However, existing methods such as BERT model a single document, and do not capture dependencies or knowledge that span across documents. In this work, we propose LinkBERT, an LM pretraining method that leverages links between documents, e.g., hyperlinks. Given a text corpus, we view it as a graph of documents and create LM inputs by placing linked documents in the same context. We then pretrain the LM with two joint self-supervised objectives: masked language modeling and our new proposal, document relation prediction. We show that LinkBERT outperforms BERT on various downstream tasks across two domains: the general domain (pretrained on Wikipedia with hyperlinks) and biomedical domain (pretrained on PubMed with citation links). LinkBERT is especially effective for multi-hop reasoning and few-shot QA (+5% absolute improvement on HotpotQA and TriviaQA), and our biomedical LinkBERT sets new states of the art on various BioNLP tasks (+7% on BioASQ and USMLE). 
    more » « less
  5. Aligning language models (LMs) with preferences is an important problem in natural language generation. A key challenge is that preferences are typically provided at the sequence level while LM training and generation both occur at the token level. There is, therefore, a granularity mismatch between the preference and the LM training losses, which may complicate the learning problem. In this paper, we address this issue by developing an alternate training process, where we iterate between grounding the sequence-level preference into token-level training guidance, and improving the LM with the learned guidance. For guidance learning, we design a framework that extends the pairwise-preference learning in imitation learning to both variable-length LM generation and the utilization of the preference among multiple generations. For LM training, based on the amount of supervised data, we present two minimalist learning objectives that utilize the learned guidance. In experiments, our method performs competitively on two distinct representative LM tasks — discrete-prompt generation and text summarization. Source codes are released at https://github.com/Shentao-YANG/Preference_Grounded_Guidance. 
    more » « less