skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parvalbumin neurons enhance temporal coding and reduce cortical noise in complex auditory scenes
Abstract Cortical representations supporting many cognitive abilities emerge from underlying circuits comprised of several different cell types. However, cell type-specific contributions to rate and timing-based cortical coding are not well-understood. Here, we investigated the role of parvalbumin neurons in cortical complex scene analysis. Many complex scenes contain sensory stimuli which are highly dynamic in time and compete with stimuli at other spatial locations. Parvalbumin neurons play a fundamental role in balancing excitation and inhibition in cortex and sculpting cortical temporal dynamics; yet their specific role in encoding complex scenes via timing-based coding, and the robustness of temporal representations to spatial competition, has not been investigated. Here, we address these questions in auditory cortex of mice using a cocktail party-like paradigm, integrating electrophysiology, optogenetic manipulations, and a family of spike-distance metrics, to dissect parvalbumin neurons’ contributions towards rate and timing-based coding. We find that suppressing parvalbumin neurons degrades cortical discrimination of dynamic sounds in a cocktail party-like setting via changes in rapid temporal modulations in rate and spike timing, and over a wide range of time-scales. Our findings suggest that parvalbumin neurons play a critical role in enhancing cortical temporal coding and reducing cortical noise, thereby improving representations of dynamic stimuli in complex scenes.  more » « less
Award ID(s):
2319321
PAR ID:
10433263
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Biology
Volume:
6
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gutkin, Boris S. (Ed.)
    Attentional modulation of cortical networks is critical for the cognitive flexibility required to process complex scenes. Current theoretical frameworks for attention are based almost exclusively on studies in visual cortex, where attentional effects are typically modest and excitatory. In contrast, attentional effects in auditory cortex can be large and suppressive. A theoretical framework for explaining attentional effects in auditory cortex is lacking, preventing a broader understanding of cortical mechanisms underlying attention. Here, we present a cortical network model of attention in primary auditory cortex (A1). A key mechanism in our network is attentional inhibitory modulation (AIM) of cortical inhibitory neurons. In this mechanism, top-down inhibitory neurons disinhibit bottom-up cortical circuits, a prominent circuit motif observed in sensory cortex. Our results reveal that the same underlying mechanisms in the AIM network can explain diverse attentional effects on both spatial and frequency tuning in A1. We find that a dominant effect of disinhibition on cortical tuning is suppressive, consistent with experimental observations. Functionally, the AIM network may play a key role in solving the cocktail party problem. We demonstrate how attention can guide the AIM network to monitor an acoustic scene, select a specific target, or switch to a different target, providing flexible outputs for solving the cocktail party problem. 
    more » « less
  2. Abstract Hippocampal network activity at theta frequencies (5-10Hz) is important for behavior. However, it remains unclear how behaviorally-relevant network theta rhythms arise and interact with cellular dynamics to dictate spike timing. We performed membrane voltage (Vm) imaging of individual CA1 pyramidal cells and parvalbumin interneurons with simultaneous local field potential (LFP) recordings in mice during locomotion. We found that Vm theta rhythms organize spike timing in both cell types regardless of behavioral conditions, but the Vm of parvalbumin interneurons is better synchronized with LFP. The temporal relationships between spikes and LFP theta reliably reflect the Vm-LFP relationships in parvalbumin cells, but not in pyramidal cells. Thus, cellular theta rhythms broadly organize spike timing in CA1 neurons, and parvalbumin interneurons are critical in coordinating network theta rhythms. One-Sentence SummaryCellular membrane voltage of parvalbumin interneurons organizes spiking and network dynamics in the hippocampus. 
    more » « less
  3. The recently discovered spatial-temporal information processing capability of bio-inspired Spiking neural networks (SNN) has enabled some interesting models and applications. However designing large-scale and high-performance model is yet a challenge due to the lack of robust training algorithms. A bio-plausible SNN model with spatial-temporal property is a complex dynamic system. Synapses and neurons behave as filters capable of preserving temporal information. As such neuron dynamics and filter effects are ignored in existing training algorithms, the SNN downgrades into a memoryless system and loses the ability of temporal signal processing. Furthermore, spike timing plays an important role in information representation, but conventional rate-based spike coding models only consider spike trains statistically, and discard information carried by its temporal structures. To address the above issues, and exploit the temporal dynamics of SNNs, we formulate SNN as a network of infinite impulse response (IIR) filters with neuron nonlinearity. We proposed a training algorithm that is capable to learn spatial-temporal patterns by searching for the optimal synapse filter kernels and weights. The proposed model and training algorithm are applied to construct associative memories and classifiers for synthetic and public datasets including MNIST, NMNIST, DVS 128 etc. Their accuracy outperforms state-of-the-art approaches. 
    more » « less
  4. AbstractEating behaviours are influenced by the integration of gustatory, olfactory and somatosensory signals, which all contribute to the perception of flavour. Although extensive research has explored the neural correlates of taste in the gustatory cortex (GC), less is known about its role in encoding thermal information. This study investigates the encoding of oral thermal and chemosensory signals by GC neurons compared to the oral somatosensory cortex. In this study we recorded the spiking activity of more than 900 GC neurons and 500 neurons from the oral somatosensory cortex in mice allowed to freely lick small drops of gustatory stimuli or deionized water at varying non‐nociceptive temperatures. We then developed and used a Bayesian‐based analysis technique to assess neural classification scores based on spike rate and phase timing within the lick cycle. Our results indicate that GC neurons rely predominantly on rate information, although phase information is needed to achieve maximum accuracy, to effectively encode both chemosensory and thermosensory signals. GC neurons can effectively differentiate between thermal stimuli, excelling in distinguishing both large contrasts (14vs. 36°C) and, although less effectively, more subtle temperature differences. Finally a direct comparison of the decoding accuracy of thermosensory signals between the two cortices reveals that whereas the somatosensory cortex exhibited higher overall accuracy, the GC still encodes significant thermosensory information. These findings highlight the GC's dual role in processing taste and temperature, emphasizing the importance of considering temperature in future studies of taste processing.image Key pointsFlavour perception relies on gustatory, olfactory and somatosensory integration, with the gustatory cortex (GC) central to taste processing.GC neurons also respond to temperature, but the specifics of how the GC processes taste and oral thermal stimuli remain unclear.The focus of this study is on the role of GC neurons in the encoding of oral thermal information, particularly compared to the coding functions of the oral somatosensory cortex.We found that whereas the somatosensory cortex shows a higher classification accuracy for distinguishing water temperature, the GC still encodes a substantial amount of thermosensory information.These results emphasize the importance of including temperature as a key factor in future studies of cortical taste coding. 
    more » « less
  5. Neurons in the auditory cortex are tuned to specific ranges of sound frequencies. Although the cellular and network mechanisms underlying neuronal sound frequency selectivity are well studied and reflect the interplay of thalamocortical and intracortical excitatory inputs and further refinement by cortical inhibition, the precise synaptic signaling mechanisms remain less understood. To gain further understanding on these mechanisms and their effects on sound-driven behavior, we used in vivo imaging as well as behavioral approaches in awake and behaving female and male mice. We discovered that synaptic zinc, a modulator of neurotransmission and responsiveness to sound, sharpened the sound frequency tuning of principal and parvalbumin-expressing neurons and widened the sound frequency tuning of somatostatin-expressing inhibitory neurons in layer 2/3 of the primary auditory cortex. In the absence of cortical synaptic zinc, mice exhibited reduced acuity for detecting changes in sound frequencies. Together, our results reveal that cell-type-specific effects of zinc contribute to cortical sound frequency tuning and enhance acuity for sound frequency discrimination. SIGNIFICANCE STATEMENT Neuronal tuning to specific features of sensory stimuli is a fundamental property of cortical sensory processing that advantageously supports behavior. Despite the established roles of synaptic thalamocortical and intracortical excitation and inhibition in cortical tuning, the precise synaptic signaling mechanisms remain unknown. Here, we investigated these mechanisms in the mouse auditory cortex. We discovered a previously unknown signaling mechanism linking synaptic zinc signaling with cell-specific cortical tuning and enhancement in sound frequency discrimination acuity. Given the abundance of synaptic zinc in all sensory cortices, this newly discovered interaction between synaptic zinc and cortical tuning can provide a general mechanism for modulating neuronal stimulus specificity and sensory-driven behavior. 
    more » « less