skip to main content


Title: OS 3 : The Art and the Practice of Searching for Open-Source Serverless Functions
Serverless computing enables service developers to focus on creating useful services, without being concerned about how these services would be deployed and provisioned. Many developers reuse existing open-source serverless functions to create their own functions. However, existing technologies for searching open-source software repositories have not taken into consideration the unique features of serverless functions. This paper presents a novel approach to searching for serverless functions, called Open-Source Serverless Search (OS3) that maximizes the utility of the returned serverless functions by (1) basing the search process on both descriptive keywords and library usages, thus increasing the search results' precision and completeness; (2) filtering and ranking the search results based on the software license, to accommodate the unique requirements of deploying serverless functions on dissimilar platforms, including cloud and edge computing. Implemented in 3K lines of Python, with a search space of 5,981 serverless repositories from four major serverless platforms, OS3 outperforms existing search approaches in terms of the suitability of the search results, based on our evaluation with realistic use cases.  more » « less
Award ID(s):
2104337
NSF-PAR ID:
10433331
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops)
Page Range / eLocation ID:
219 to 224
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Issue tracking systems enable users and developers to comment on problems plaguing a software system. Empirical Software Engineering (ESE) researchers study (open-source) project issues and the comments and threads within to discover---among others---challenges developers face when, e.g., incorporating new technologies, platforms, and programming language constructs. However, issue discussion threads accumulate over time and thus can become unwieldy, hindering any insight that researchers may gain.  While existing approaches alleviate this burden by classifying issue thread comments, there is a gap between searching popular open-source software repositories (e.g., those on GitHub) for issues containing particular keywords and feeding the results into a classification model. In this paper, we demonstrate a research infrastructure tool called QuerTCI that bridges this gap by integrating the GitHub issue comment search API with the classification models found in existing approaches. Using queries, ESE researchers can retrieve GitHub issues containing particular keywords, e.g., those related to a certain programming language construct, and subsequently classify the kinds of discussions occurring in those issues.  Using our tool, our hope is that ESE researchers can uncover challenges related to particular technologies using certain keywords through popular open-source repositories more seamlessly than previously possible. A tool demonstration video may be found at: https://youtu.be/fADKSxn0QUk.

     
    more » « less
  2. The increased use of micro-services to build web applications has spurred the rapid growth of Function-as-a-Service (FaaS) or serverless computing platforms. While FaaS simplifies provisioning and scaling for application developers, it introduces new challenges in resource management that need to be handled by the cloud provider. Our analysis of popular serverless workloads indicates that schedulers need to handle functions that are very short-lived, have unpredictable arrival patterns, and require expensive setup of sandboxes. The challenge of running a large number of such functions in a multi-tenant cluster makes existing scheduling frameworks unsuitable. We present Archipelago, a platform that enables low latency request execution in a multi-tenant serverless setting. Archipelago views each application as a DAG of functions, and every DAG in associated with a latency deadline. Archipelago achieves its per-DAG request latency goals by: (1) partitioning a given cluster into a number of smaller worker pools, and associating each pool with a semi-global scheduler (SGS), (2) using a latency-aware scheduler within each SGS along with proactive sandbox allocation to reduce overheads, and (3) using a load balancing layer to route requests for different DAGs to the appropriate SGS, and automatically scale the number of SGSs per DAG. Our testbed results show that Archipelago meets the latency deadline for more than 99% of realistic application request workloads, and reduces tail latencies by up to 36X compared to state-of-the-art serverless platforms. 
    more » « less
  3. Serverless computing promises an efficient, low-cost compute capability in cloud environments. However, existing solutions, epitomized by open-source platforms such as Knative, include heavyweight components that undermine this goal of serverless computing. Additionally, such serverless platforms lack dataplane optimizations to achieve efficient, high-performance function chains that facilitate the popular microservices development paradigm. Their use of unnecessarily complex and duplicate capabilities for building function chains severely degrades performance. 'Cold-start' latency is another deterrent. We describe SPRIGHT, a lightweight, high-performance, responsive serverless framework. SPRIGHT exploits shared memory processing and dramatically improves the scalability of the dataplane by avoiding unnecessary protocol processing and serialization-deserialization overheads. SPRIGHT extensively leverages event-driven processing with the extended Berkeley Packet Filter (eBPF). We creatively use eBPF's socket message mechanism to support shared memory processing, with overheads being strictly load-proportional. Compared to constantly-running, polling-based DPDK, SPRIGHT achieves the same dataplane performance with 10× less CPU usage under realistic workloads. Additionally, eBPF benefits SPRIGHT, by replacing heavyweight serverless components, allowing us to keep functions 'warm' with negligible penalty. Our preliminary experimental results show that SPRIGHT achieves an order of magnitude improvement in throughput and latency compared to Knative, while substantially reducing CPU usage, and obviates the need for 'cold-start'. 
    more » « less
  4. Serverless computing is a new cloud programming and deployment paradigm that is receiving wide-spread uptake. Serverless offerings such as Amazon Web Services (AWS) Lambda, Google Functions, and Azure Functions automatically execute simple functions uploaded by developers, in response to cloud-based event triggers. The serverless abstraction greatly simplifies integration of concurrency and parallelism into cloud applications, and enables deployment of scalable distributed systems and services at very low cost. Although a significant first step, the serverless abstraction requires tools that software engineers can use to reason about, debug, and optimize their increasingly complex, asynchronous applications. Toward this end, we investigate the design and implementation of GammaRay, a cloud service that extracts causal dependencies across functions and through cloud services, without programmer intervention. We implement GammaRay for AWS Lambda and evaluate the overheads that it introduces for serverless micro-benchmarks and applications written in Python. 
    more » « less
  5. Abstract Motivation

    Driven by technological advances, the throughput and cost of mass spectrometry (MS) proteomics experiments have improved by orders of magnitude in recent decades. Spectral library searching is a common approach to annotating experimental mass spectra by matching them against large libraries of reference spectra corresponding to known peptides. An important disadvantage, however, is that only peptides included in the spectral library can be found, whereas novel peptides, such as those with unexpected post-translational modifications (PTMs), will remain unknown. Open modification searching (OMS) is an increasingly popular approach to annotate modified peptides based on partial matches against their unmodified counterparts. Unfortunately, this leads to very large search spaces and excessive runtimes, which is especially problematic considering the continuously increasing sizes of MS proteomics datasets.

    Results

    We propose an OMS algorithm, called HOMS-TC, that fully exploits parallelism in the entire pipeline of spectral library searching. We designed a new highly parallel encoding method based on the principle of hyperdimensional computing to encode mass spectral data to hypervectors while minimizing information loss. This process can be easily parallelized since each dimension is calculated independently. HOMS-TC processes two stages of existing cascade search in parallel and selects the most similar spectra while considering PTMs. We accelerate HOMS-TC on NVIDIA’s tensor core units, which is emerging and readily available in the recent graphics processing unit (GPU). Our evaluation shows that HOMS-TC is 31× faster on average than alternative search engines and provides comparable accuracy to competing search tools.

    Availability and implementation

    HOMS-TC is freely available under the Apache 2.0 license as an open-source software project at https://github.com/tycheyoung/homs-tc.

     
    more » « less