skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scattering resonances in unbounded transmission problems with sign-changing coefficient
Abstract It is well known that classical optical cavities can exhibit localized phenomena associated with scattering resonances, leading to numerical instabilities in approximating the solution. This result can be established via the ‘quasimodes to resonances’ argument from the black box scattering framework. Those localized phenomena concentrate at the inner boundary of the cavity and are called whispering gallery modes. In this paper we investigate scattering resonances for unbounded transmission problems with sign-changing coefficient (corresponding to optical cavities with negative optical properties, e.g. made of metamaterials). Due to the change of sign of optical properties, previous results cannot be applied directly, and interface phenomena at the metamaterial-dielectric interface (such as the so-called surface plasmons) emerge. We establish the existence of scattering resonances for arbitrary two-dimensional smooth metamaterial cavities. The proof relies on an asymptotic characterization of the resonances, and shows that problems with sign-changing coefficient naturally fit the black box scattering framework. Our asymptotic analysis reveals that, depending on the metamaterial’s properties, scattering resonances situated close to the real axis are associated with surface plasmons. Examples for several metamaterial cavities are provided.  more » « less
Award ID(s):
2009366
PAR ID:
10433342
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IMA Journal of Applied Mathematics
Volume:
88
Issue:
2
ISSN:
0272-4960
Page Range / eLocation ID:
215 to 257
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We describe wave decay rates associated to embedded resonances and spectral thresholds for waveguides and manifolds with infinite cylindrical ends. We show that if the cut-off resolvent is polynomially bounded at high energies, as is the case in certain favorable geometries, then there is an associated asymptotic expansion, up to a $$O(t^{-k_0})$$ remainder, of solutions of the wave equation on compact sets as $$t \to \infty $$. In the most general such case we have $$k_0=1$$, and under an additional assumption on the infinite ends we have $$k_0 = \infty $$. If we localize the solutions to the wave equation in frequency as well as in space, then our results hold for quite general waveguides and manifolds with infinite cylindrical ends. To treat problems with and without boundary in a unified way, we introduce a black box framework analogous to the Euclidean one of Sjöstrand and Zworski. We study the resolvent, generalized eigenfunctions, spectral measure, and spectral thresholds in this framework, providing a new approach to some mostly well-known results in the scattering theory of manifolds with cylindrical ends. 
    more » « less
  2. We explain the Lorentz resonances in plasmonic crystals that consist of two-dimensional nano-dielectric inclusions as the interaction between resonant material properties and geometric resonances of electrostatic nature. One example of such plasmonic crystals are graphene nanosheets that are periodically arranged within a non-magnetic bulk dielectric. We identify local geometric resonances on the length scale of the small-scale period. From a materials perspective, the graphene surface exhibits a dispersive surface conductance captured by the Drude model. Together these phenomena conspire to generate Lorentz resonances at frequencies controlled by the surface geometry and the surface conductance. The Lorentz resonances found in the frequency response of the effective dielectric tensor of the bulk metamaterial are shown to be given by an explicit formula, in which material properties and geometric resonances are decoupled. This formula is rigorous and obtained directly from corrector fields describing local electrostatic fields inside the heterogeneous structure. Our analytical findings can serve as an efficient computational tool to describe the general frequency dependence of periodic optical devices. As a concrete example, we investigate two prototypical geometries composed of nanotubes and nanoribbons. 
    more » « less
  3. Graphene can support surface plasmons with higher confinement, lower propagation loss, and substantially more tunable response compared to usual metal-based plasmonic structures. Interestingly, plasmons in graphene can strongly couple with nanostructures and gratings placed in its vicinity to form new hybrid systems that can provide a platform to investigate more complicated plasmonic phenomena. In this Perspective, an analysis on the excitation of highly confined graphene plasmons and their strong coupling with metallic or dielectric gratings is performed. We emphasize the flexibility in the efficient control of light–matter interaction by these new hybrid systems, benefiting from the interplay between graphene plasmons and other external resonant modes. The hybrid graphene-plasmon grating systems offer unique tunable plasmonic resonances with enhanced field distributions. They exhibit a novel route to realize practical emerging applications, including nonreciprocal devices, plasmonic switches, perfect absorbers, nonlinear structures, photodetectors, and optical sensors. 
    more » « less
  4. Abstract A goal in the field of nanoscale optics is the fabrication of nanostructures with strong directional light scattering at visible frequencies. Here, the synthesis of Mie‐resonant core–shell particles with overlapping electric and magnetic dipole resonances in the visible spectrum is demonstrated. The core consists of silicon surrounded by a lower index silicon oxynitride (SiOxNy) shell of an adjustable thickness. Optical spectroscopies coupled to Mie theory calculations give the first experimental evidence that the relative position and intensity of the magnetic and electric dipole resonances are tuned by changing the core–shell architecture. Specifically, coating a high‐index particle with a low‐index shell coalesces the dipoles, while maintaining a high scattering efficiency, thus generating broadband forward scattering. This synthetic strategy opens a route toward metamaterial fabrication with unprecedented control over visible light manipulation. 
    more » « less
  5. In the last two decades, tremendous research has been conducted on the discovery, design and synthesis, characterization, and applications of two-dimensional (2D) materials. Thermal conductivity and interface thermal conductance/resistance of 2D materials are two critical properties in their applications. Raman spectroscopy, which measures the inelastic scattering of photons by optical phonons, can distinct a 2D material's temperature from its surrounding materials', featuring unprecedented spatial resolution (down to the atomic level). Raman-based thermometry has been used tremendously for characterizing the thermal conductivity of 2D materials (suspended or supported) and interface thermal conductance/resistance. Very large data deviations have been observed in literature, partly due to physical phenomena and factors not considered in measurements. Here, we provide a critical review, analysis, and perspectives about a broad spectrum of physical problems faced in Raman-based thermal characterization of 2D materials, namely interface separation, localized stress due to thermal expansion mismatch, optical interference, conjugated phonon, and hot carrier transport, optical–acoustic phonon thermal nonequilibrium, and radiative electron–hole recombination in monolayer 2D materials. Neglect of these problems will lead to a physically unreasonable understanding of phonon transport and interface energy coupling. In-depth discussions are also provided on the energy transport state-resolved Raman (ET-Raman) technique to overcome these problems and on future research challenges and needs. 
    more » « less