skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Broadband Forward Light Scattering by Architectural Design of Core–Shell Silicon Particles
Abstract A goal in the field of nanoscale optics is the fabrication of nanostructures with strong directional light scattering at visible frequencies. Here, the synthesis of Mie‐resonant core–shell particles with overlapping electric and magnetic dipole resonances in the visible spectrum is demonstrated. The core consists of silicon surrounded by a lower index silicon oxynitride (SiOxNy) shell of an adjustable thickness. Optical spectroscopies coupled to Mie theory calculations give the first experimental evidence that the relative position and intensity of the magnetic and electric dipole resonances are tuned by changing the core–shell architecture. Specifically, coating a high‐index particle with a low‐index shell coalesces the dipoles, while maintaining a high scattering efficiency, thus generating broadband forward scattering. This synthetic strategy opens a route toward metamaterial fabrication with unprecedented control over visible light manipulation.  more » « less
Award ID(s):
2001650 1720595
PAR ID:
10361690
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
31
Issue:
26
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract All‐optical control and detection of magnetic states for high‐density recording necessitate nanophotonic approaches to amplify local light intensity below the diffraction limit. Sculpting the near‐field phase and polarization can additionally strengthen magneto‐optical effects that rely on circularly polarized pulses, such as all‐optical helicity‐dependent switching, imaging, and spin‐wave excitation. Here, high‐refractive‐index dielectric nanoantennas illuminated with circularly polarized light resonantly enhance local electric field rotation by more than sixfold within [Pt/Co]Nthin films. Sub‐wavelength arrays of amorphous Si nanodisks, or metasurfaces, patterned on perpendicularly magnetized films support Mie‐type resonances that modulate reflection and transmission dissymmetry by >±2% in experiments. Spatial and spectral interference between dipolar modes, proximity effects, and gain are evaluated by varying disk aspect ratio, metasurface–metal separation, and magnetic film thickness, respectively. Simulated enhancements in magnetic circular birefringence and differential absorption are correlated with amplified local field rotation at electric dipolar modes. Greater achievable amplifications are shown via simulations with single‐crystalline Si metasurfaces exhibiting lower losses, including a 12‐fold strengthened electric field rotation within ferromagnetic layers. The metasurface design rules established here could enable nanoscale localization of all‐optical magnetic switching with lowered laser fluence thresholds, as well as enhanced magneto‐optical responses for light‐assisted reading in spintronic devices. 
    more » « less
  2. High-refractive-index nanoantennas have attracted significant attention lately because of the strong excitations of electric and magnetic resonances in these nanoantennas. Here, we theoretically investigate the excitation of multipolar Mie resonances in high-refractive-index nanoantennas that are immersed in a negative-index medium. Our analysis shows a significant enhancement of magnetic resonances in this case. Furthermore, the magnetic dipolar and quadrupolar resonances exhibit a π-shift compared to these magnetic resonances in a conventional medium, which stems from the “left-handedness” of the negative-index medium. As a result, the spectral regions where electric and magnetic resonances are in-phase or out-of-phase complement, or opposite, to those in a conventional medium. Most importantly, we demonstrate nanoantenna magnetic resonances in two practical cases of negative-index media realized with common materials, such as multilayer structures with surface waves with negative effective mode index and fishnet metamaterial. These findings represent significant progress toward the realization of hybrid emitting structures that exhibit transitions with both electric and magnetic dipolar characteristics and pave the way for greater flexibility in controlling radiation patterns from quantum emitters. 
    more » « less
  3. ABSTRACT When arranged in a metasurface, the collective enhancement of field interactions within scattering elements enables precise control over the incident light phase and amplitude. In this work, we analyze collective multipolar resonances in metasurfaces that arise from the spatially extended nature of electromagnetic interactions within these structures, with particular emphasis on MXene metasurfaces. This collective scattering leads to unique and tunable resonance behaviors that reach beyond the simple dipolar approximations, thus enabling advanced manipulation of light at subwavelength scales. We also explore resonances in the scatterers and metasurfaces made of different materials, categorizing them into lossy materials, including transition metal dichalcogenides and conventional metals, and high‐refractive‐index materials, such as silicon. We observe the excitation of MXene multipolar resonances across the visible‐ and infrared‐wavelength spectra and demonstrate their control through the design of scattering elements of the metasurface. We show that periodic lattice arrays support strong localized resonances through the collective response of individual nanoresonators and that one can control multipolar resonances by engineering metasurface nanoresonators and their distribution. 
    more » « less
  4. Abstract Electron‐beam deposition stands as a versatile technique utilized for the accurate and controlled thin‐film deposition of a wide range of materials that readily undergo evaporation. However, silicon, a commonly used material, is prone to oxidation during the deposition process because of the presence of water vapors and oxygen in the chamber. To overcome this challenge, a tailored approach is developed that involves controlling the deposition conditions, including the base pressure in the chamber and the deposition rate. Silicon oxidation is successfully overcome, and this results in achieving refractive index values comparable to those obtained with alternative deposition methods for amorphous silicon. The research shows that the deposition conditions can be utilized effectively to tune the refractive index, providing flexibility in achieving the desired optical properties. It is demonstrated that Mie‐resonant metasurfaces exhibit strong collective resonances, driven by the coherent coupling of Mie modes within the periodic nanoantenna lattice, as evidenced by distinct spectral features in the scattering response. These resonances are observed to be highly tunable, with spectral shifts corresponding to controlled variations in the electron‐beam deposition parameters and silicon oxidation. The approach enables silicon deposition for metasurfaces, which presents exciting possibilities for tailoring and designing advanced nanostructures with unique optical characteristics. 
    more » « less
  5. Abstract This report is on studies directed at the nature of magneto-electric (ME) coupling by ferromagnetic resonance (FMR) under an electric field in a coaxial nanofiber of nickel ferrite (NFO) and lead zirconate titanate (PZT). Fibers with ferrite cores and PZT shells were prepared by electrospinning. The core–shell structure of annealed fibers was confirmed by electron- and scanning probe microscopy. For studies on converse ME effects, i.e., the magnetic response of the fibers to an applied electric field, FMR measurements were done on a single fiber with a near-field scanning microwave microscope (NSMM) at 5–10 GHz by obtaining profiles of both amplitude and phase of the complex scattering parameterS11as a function of bias magnetic field. The strength of the voltage-ME couplingAvwas determined from the shift in the resonance fieldHrfor bias voltage ofV = 0–7 V applied to the fiber. The coefficientAvfor the NFO core/PZT shell structure was estimated to be − 1.92 kA/Vm (− 24 Oe/V). A model was developed for the converse ME effects in the fibers and the theoretical estimates are in good agreement with the data. 
    more » « less