Rechargeable Li-CO2batteries have emerged as promising candidates for next generation batteries due to their low cost, high theoretical capacity, and ability to capture the greenhouse gas CO2. However, these batteries still face challenges such as slow reaction kinetic and short cycle performance due to the accumulation of discharge products. To address this issue, it is necessary to design and develop high efficiency electrocatalysts that can improve CO2reduction reaction. In this study, we report the use of NiMn2O4electrocatalysts combined with multiwall carbon nanotubes as a cathode material in the Li-CO2batteries. This combination proved effective in decomposing discharge products and enhancing cycle performance. The battery shows stable discharge–charge cycles for at least 30 cycles with a high limited capacity of 1000 mAh g−1at current density of 100 mA g−1. Furthermore, the battery with the NiMn2O4@CNT catalyst exhibits a reversible discharge capacity of 2636 mAh g−1. To gain a better understanding of the reaction mechanism of Li-CO2batteries, spectroscopies and microscopies were employed to identify the chemical composition of the discharge products. This work paves a pathway to increase cycle performance in metal-CO2batteries, which could have significant implications for energy storage and the reduction of greenhouse gas emissions.
more »
« less
Improved cycle performance of Li-CO2 batteries with nickel manganite supported carbon nanotube NiMn2O4 @CNT cathode
Rechargeable Li-CO2 batteries have emerged as promising candidates for next generation batteries due to their low cost, high theoretical capacity, and ability to capture the greenhouse gas CO2. However, these batteries still face challenges such as slow reaction kinetic and short cycle performance due to the accumulation of discharge products. To address this issue, it is necessary to design and develop high efficiency electrocatalysts that can improve CO2 reduction reaction. In this study, we report the use of NiMn2O4 electrocatalysts combined with multiwall carbon nanotubes as a cathode material in the Li-CO2 batteries. This combination proved effective in decomposing discharge products and enhancing cycle performance. The battery shows stable discharge–charge cycles for at least 30 cycles with a high limited capacity of 1000 mAh/g at current density of 100 mA/g. Furthermore, the battery with the NiMn2O4@CNT catalyst exhibits a reversible discharge capacity of 2636 mAh/g. To gain a better understanding of the reaction mechanism of Li-CO2 batteries, spectroscopies and microscopies were employed to identify the chemical composition of the discharge products. This work paves a pathway to increase cycle performance in metal-CO2 batteries, which could have significant implications for energy storage and the reduction of greenhouse gas emissions.
more »
« less
- Award ID(s):
- 2119688
- PAR ID:
- 10433404
- Editor(s):
- Doron Aurbach
- Date Published:
- Journal Name:
- Journal of the Electrochemical Society
- ISSN:
- 0013-4651
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lithium–CO2 batteries are attractive energy‐storage systems for fulfilling the demand of future large‐scale applications such as electric vehicles due to their high specific energy density. However, a major challenge with Li–CO2 batteries is to attain reversible formation and decomposition of the Li2CO3 and carbon discharge products. A fully reversible Li–CO2 battery is developed with overall carbon neutrality using MoS2 nanoflakes as a cathode catalyst combined with an ionic liquid/dimethyl sulfoxide electrolyte. This combination of materials produces a multicomponent composite (Li2CO3/C) product. The battery shows a superior long cycle life of 500 for a fixed 500 mAh g−1 capacity per cycle, far exceeding the best cycling stability reported in Li–CO2 batteries. The long cycle life demonstrates that chemical transformations, making and breaking covalent C-O bonds can be used in energy‐storage systems. Theoretical calculations are used to deduce a mechanism for the reversible discharge/charge processes and explain how the carbon interface with Li2CO3 provides the electronic conduction needed for the oxidation of Li2CO3 and carbon to generate the CO2 on charge. This achievement paves the way for the use of CO2 in advanced energy‐storage systems.more » « less
-
Lithium-sulfur (Li-S) batteries suffer from poor utilization of active material and short cycle life due to the complicated multi-step reaction mechanisms. Herein, three conditional cycling methods, i.e. asymmetrical cycling, constant voltage (CV) discharge cycling, and partial cycling are designed in order to increase the cyclability of Li-S batteries. It is found that the solid deposition process that takes place during the lower plateau of discharge is the major limiting step for achieving high discharge capacity and cycle retention, and the cathode surface coverage can be deferred by applying an optimal discharge/charge rate and CV discharge cycling. The asymmetrical cycling renders a specific capacity of ca. 700 mAh g-1 after 200 cycles, 30% higher than that under symmetrical cycling, while applying a CV discharge cycling enables a full retention of target specific capacity of ca. 800 mAh g-1 over 50 cycles. The partial cycling with a low number of phase transformation steps and reduced surface coverage at the end of discharge/charge also enhances cyclability. This work paves the way for understanding and improving the cycling performance of Li-S batteries without increasing the cost of electrode design or changing the configuration of the cell.more » « less
-
Sulfur-polyacrylonitrile (S-PAN) composite has been developed as a novel composite cathode material to address many issues with conventional Li-S batteries (LSBs). In this study, a freestanding S-PAN-CNT composite is first developed as the cathode material for LSBs, which is capable to deliver a high specific capacity of 1458 mAh g-1 at 0.2C and a desirable high-rate performance of 1097 mAh g-1 at 2.0 C. Furthermore, a Li2S-PAN-CNT cathode is obtained via in-situ direct pre-lithiation of S-PAN-CNT composite, which exhibits an even improved discharge capacity, cycling performance, and rate capability. Lastly, we develop Li-ion sulfur full batteries based on both S-PAN-CNT and Li2S-PAN-CNT cathode. The excellent electrochemical performance and corresponding theoretical estimation both demonstrate that the proposed system as a promising metal-free Li-ion battery with a high specific capacity, good cycle life, and low cost.more » « less
-
Abstract All‐solid‐state batteries are emerging as potential successors in energy storage technologies due to their increased safety, stemming from replacing organic liquid electrolytes in conventional Li‐ion batteries with less flammable solid‐state electrolytes. However, all‐solid‐state batteries require precise control over cycling pressure to maintain effective interfacial contacts between materials. Traditional uniaxial cell holders, often used in battery research, face challenges in accommodating electrode volume changes, providing uniform pressure distribution, and maintaining consistent pressure over time. This study introduces isostatic pouch cell holders utilizing air as pressurizing media to achieve uniform and accurately regulated cycling pressure. LiNi0.8Co0.1Mn0.1O2| Li6PS5Cl | Si pouch cells are fabricated and tested under 1 to 5 MPa pressures, revealing improved electrochemical performance with higher cycling pressures, with 2 MPa as the minimum for optimal operation. A bilayer pouch cell with a theoretical capacity of 100 mAh, cycled with an isostatic pouch cell holder, demonstrated a first‐cycle Coulombic efficiency of 76.9% and a discharge capacity of 173.6 mAh g−1(88.1 mAh), maintaining 83.6% capacity after 100 cycles. These findings underscore the effectiveness of isostatic pouch cell holders in enhancing the performance and practical application of all‐solid‐state batteries.more » « less