Phyllachora maydis is a fungal plant pathogen that causes tar spot of corn ( Zea mays) in North and South America, causing devastating yield losses under favorable conditions. Although the causal agent is relatively easy to diagnose via macroscopic and microscopic observations, other diseases and conditions, such as insect frass, have been mistaken for tar spot of corn. Furthermore, conidia and ascospores in isolation can be difficult to visually distinguish from other fungi, and the development of signs and symptoms of the disease may not be observed until 12 to 20 days after infection. Therefore, we developed a TaqMan quantitative polymerase chain reaction (qPCR) assay for the detection and quantification of this pathogen to be used for diagnostics and airborne spore quantification. The assay was designed for the internal transcribed spacer region of P. maydis. The specificity of the assay was confirmed and tested against various nontarget Phyllachora species, corn pathogens, endophytes, and P. maydis samples from several states in the Midwest and from Mexico. The detection limit of this assay was determined to be 100 fg of genomic P. maydis DNA. To demonstrate the transferability of this technology, the assay was tested in different labs using various qPCR thermal cyclers. This assay can be used in downstream research involving latency period, disease prediction, and diagnostics. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
more »
« less
Elucidating the obligate nature and biological capacity of an invasive fungal corn pathogen
Tar spot is a devasting corn disease caused by the obligate fungal pathogen Phyllachora maydis. Since its initial identification in the United States in 2015, P. maydis has become an increasing threat to corn production. Despite this, P. maydis has remained largely understudied at the molecular level due to difficulties surrounding its obligate lifestyle. Here, we generated a significantly improved P. maydis nuclear and mitochondrial genome using a combination of long- and short-read technologies and also provide the first transcriptomic analysis of primary tar spot lesions. Our results show that P. maydis is deficient in inorganic nitrogen utilization, is likely heterothallic, and encodes for significantly more protein coding genes, including secreted enzymes and effectors, than previous determined. Furthermore, our expression analysis suggests that following primary tar spot lesion formation, P. maydis might reroute carbon flux away from DNA replication and cell division pathways and towards pathways previously implicated in having significant roles in pathogenicity, such as autophagy and secretion. Together, our results identified several highly expressed unique secreted factors that likely contribute to host recognition and subsequent infection, greatly increasing our knowledge of the biological capacity of P. maydis, which have much broader implications for mitigating tar spot of corn.
more »
« less
- Award ID(s):
- 1828149
- PAR ID:
- 10433472
- Date Published:
- Journal Name:
- Molecular Plant-Microbe Interactions®
- ISSN:
- 0894-0282
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cancer-associated fibroblasts (CAFs) play an active role in remodeling the local tumor stroma to support tumor initiation, growth, invasion, metastasis, and therapeutic resistance. The CAF-secreted chemokine, CXCL12, has been directly implicated in the tumorigenic progression of carcinomas, including breast cancer. Using a 3-D in vitro microfluidic-based microtissue model, we demonstrate that stromal CXCL12 secreted by CAFs has a potent effect on increasing the vascular permeability of local blood microvessel analogues through paracrine signaling. Moreover, genetic deletion of fibroblast-specific CXCL12 significantly reduced vessel permeability compared to CXCL12 secreting CAFs within the recapitulated tumor microenvironment (TME). We suspected that fibroblast-mediated extracellular matrix (ECM) remodeling and contraction indirectly accounted for this change in vessel permeability. To this end, we investigated the autocrine effects of CXCL12 on fibroblast contractility and determined that antagonistic blocking of CXCL12 did not have a substantial effect on ECM contraction. Our findings indicate that fibroblast-secreted CXCL12 has a significant role in promoting a leakier endothelium hospitable to angiogenesis and tumor cell intravasation; however, autocrine CXCL12 is not the primary upstream trigger of CAF contractility.more » « less
-
McIntyre, L (Ed.)Abstract Foliar diseases of maize are among the most important diseases of maize worldwide. This study focused on 4 major foliar diseases of maize: Goss's wilt, gray leaf spot, northern corn leaf blight, and southern corn leaf blight. QTL mapping for resistance to Goss’s wilt was conducted in 4 disease resistance introgression line populations with Oh7B as the common recurrent parent and Ki3, NC262, NC304, and NC344 as recurrent donor parents. Mapping results for Goss’s wilt resistance were combined with previous studies for gray leaf spot, northern corn leaf blight, and southern corn leaf blight resistance in the same 4 populations. We conducted (1) individual linkage mapping analysis to identify QTL specific to each disease and population; (2) Mahalanobis distance analysis to identify putative multiple disease resistance regions for each population; and 3) joint linkage mapping to identify QTL across the 4 populations for each disease. We identified 3 lines that were resistant to all 4 diseases. We mapped 13 Goss’s wilt QTLs in the individual populations and an additional 6 using joint linkage mapping. All Goss’s wilt QTL had small effects, confirming that resistance to Goss’s wilt is highly quantitative. We report several potentially important chromosomal bins associated with multiple disease resistance including 1.02, 1.03, 3.04, 4.06, 4.08, and 9.03. Together, these findings indicate that disease QTL distribution is not random and that there are locations in the genome that confer resistance to multiple diseases. Furthermore, resistance to bacterial and fungal diseases is not entirely distinct, and we identified lines resistant to both fungi and bacteria, as well as loci that confer resistance to both bacterial and fungal diseases.more » « less
-
Abstract Climate change is intensifying the frequency and severity of extreme events, posing challenges to food security. Corn, a staple crop for billions, is particularly vulnerable to heat stress, a primary driver of yield variability. While many studies have examined the climate impact on average corn yields, little attention has been given to the climate impact on production volatility. This study investigates the future volatility and risks associated with global corn supply under climate change, evaluating the potential benefits of two key adaptation strategies: irrigation and market integration. A statistical model is employed to estimate corn yield response to heat stress and utilize NEX-GDDP-CMIP6 climate data to project future production volatility and risks of substantial yield losses. Three metrics are introduced to quantify these risks: Sigma (σ), the standard deviation of year-on-year yield change, which reflects overall yield volatility; Rho (ρ), the risk of substantial loss, defined as the probability of yield falling below a critical threshold; and beta (β), a relative risk coefficient that captures the volatility of a region’s corn production compared to the globally integrated market. The analysis reveals a concerning trend of increasing year-on-year yield volatility (σ) across most regions and climate models. This volatility increase is significant for key corn-producing regions like Brazil and the United States. While irrigated corn production exhibits a smaller rise in volatility, suggesting irrigation as a potential buffer against climate change impacts, it is not a sustainable option as it can cause groundwater depletion. On the other hand, global market integration reduces overall volatility and market risks significantly with less sustainability concerns. These findings highlight the importance of a multidimensional approach to adaptation in the food sector. While irrigation can benefit individual farmers, promoting global market integration offers a broader solution for fostering resilience and sustainability across the entire food system.more » « less
-
Abstract The different proteins of any proteome evolve at enormously different rates. One of the primary factors influencing rates of protein evolution is expression level, with highly expressed proteins tending to evolve at slow rates. This phenomenon, known as the expression level–evolutionary rate (E–R) anticorrelation, has been attributed to the abundance‐dependent deleterious effects of misfolding or misinteraction. We have recently shown that secreted proteins either lack an E–R anticorrelation or exhibit a significantly reduced E–R anticorrelation. This effect may be due to the strict quality control to which secreted proteins are subject in the endoplasmic reticulum (which is expected to reduce the rate of misfolding and its deleterious effects) or to their extracellular location (expected to reduce the rate of misinteraction and its deleterious effects). Among secreted proteins, N‐glycosylated ones are under particularly strong quality control. Here, we investigate how N‐linked glycosylation affects the E–R anticorrelation. Strikingly, we observe apositiveE–R correlation among N‐glycosylated proteins. That is, N‐glycoproteins that are highly expressed evolve at faster rates than lowly expressed N‐glycoproteins, in contrast to what is observed among intracellular proteins.more » « less
An official website of the United States government

