We present an evaluation update (or simply, update) algorithm for a full-featured functional programming language, which synthesizes program changes based on output changes. Intuitively, the update algorithm retraces the steps of the original evaluation, rewriting the program as needed to reconcile differences between the original and updated output values. Our approach, furthermore, allows expert users to define custom lenses that augment the update algorithm with more advanced or domain-specific program updates. To demonstrate the utility of evaluation update, we implement the algorithm in Sketch-n-Sketch, a novel direct manipulation programming system for generating HTML documents. In Sketch-n-Sketch, the user writes an ML-style functional program to generate HTML output. When the user directly manipulates the output using a graphical user interface, the update algorithm reconciles the changes. We evaluate bidirectional evaluation in Sketch-n-Sketch by authoring ten examples comprising approximately 1400 lines of code in total. These examples demonstrate how a variety of HTML documents and applications can be developed and edited interactively in Sketch-n-Sketch, mitigating the tedious edit-run-view cycle in traditional programming environments.
more »
« less
Pinpoint: A Record, Replay, and Extract System to Support Code Comprehension and Reuse
Block-based programming environments, such as Scratch and Snap!, engage users to create programming artifacts such as games and stories, and share them in an online community. Many Snap! users start programming by reusing and modifying an example project, but encounter many barriers when searching and identifying the relevant parts of the program to learn and reuse. We present Pinpoint, a system that helps Snap! programmers understand and reuse an existing program by isolating the code responsible for specific events during program execution. Specifically, a user can record an execution of the program (including user inputs and graphical output), replay the output, and select a specific time interval where the event of interest occurred, to view code that is relevant to this event. We conducted a small-scale user study to compare users’ program comprehension experience with and without Pinpoint, and found suggestive evidence that Pinpoint helps users understand and reuse a complex program more efficiently.
more »
« less
- Award ID(s):
- 1917885
- PAR ID:
- 10433484
- Date Published:
- Journal Name:
- Proceedings of the Visual Languages and Human-centered Computing Conference (VL/HCC)
- Page Range / eLocation ID:
- 1 to 10
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With the widespread deployment of Control-Flow Integrity (CFI), control-flow hijacking attacks, and consequently code reuse attacks, are significantly more difficult. CFI limits control flow to well-known locations, severely restricting arbitrary code execution. Assessing the remaining attack surface of an application under advanced control-flow hijack defenses such as CFI and shadow stacks remains an open problem. We introduce BOPC, a mechanism to automatically assess whether an attacker can execute arbitrary code on a binary hardened with CFI/shadow stack defenses. BOPC computes exploits for a target program from payload specifications written in a Turing-complete, high-level language called SPL that abstracts away architecture and program-specific details. SPL payloads are compiled into a program trace that executes the desired behavior on top of the target binary. The input for BOPC is an SPL payload, a starting point (e.g., from a fuzzer crash) and an arbitrary memory write primitive that allows application state corruption. To map SPL payloads to a program trace, BOPC introduces Block Oriented Programming (BOP), a new code reuse technique that utilizes entire basic blocks as gadgets along valid execution paths in the program, i.e., without violating CFI or shadow stack policies. We find that the problem of mapping payloads to program traces is NP-hard, so BOPC first reduces the search space by pruning infeasible paths and then uses heuristics to guide the search to probable paths. BOPC encodes the BOP payload as a set of memory writes. We execute 13 SPL payloads applied to 10 popular applications. BOPC successfully finds payloads and complex execution traces ś which would likely not have been found through manual analysis ś while following the target’s Control-Flow Graph under an ideal CFI policy in 81% of the cases.more » « less
-
Abstract: The paper introduces a visual programming language and corresponding web- and cloud-based development environment called NetsBlox. NetsBlox is an extension of Snap! and it builds upon its visual formalism as well as its open source code base. NetsBlox adds distributed programming capabilities to Snap! by introducing two simple abstractions: messages and NetsBlox services. Messages containing data can be exchanged by two or more NetsBlox programs running on different computers connected to the Internet. Services are called on a client program and are executed on the NetsBlox server. These two abstractions make it possible to create distributed programs, for example multi-player games or client-server applications. We believe that NetsBlox provides increased motivation to high-school students to become creators and not just consumers of technology. At the same time, it helps teach them basic distributed programming concepts.more » « less
-
null (Ed.)Extended Berkeley Packet Filter (BPF) has emerged as a powerful method to extend packet-processing functionality in the Linux operating system. BPF allows users to write code in high-level languages (like C or Rust) and execute them at specific hooks in the kernel, such as the network device driver. To ensure safe execution of a user-developed BPF program in kernel context, Linux uses an in-kernel static checker. The checker allows a program to execute only if it can prove that the program is crash-free, always accesses memory within safe bounds, and avoids leaking kernel data. BPF programming is not easy. One, even modest-sized BPF programs are deemed too large to analyze and rejected by the kernel checker. Two, the kernel checker may incorrectly determine that a BPF program exhibits unsafe behaviors. Three, even small performance optimizations to BPF code (e.g., 5% gains) must be meticulously hand-crafted by expert developers. Traditional optimizing compilers for BPF are often inadequate since the kernel checker's safety constraints are incompatible with rule-based optimizations. We present K2, a program-synthesis-based compiler that automatically optimizes BPF bytecode with formal correctness and safety guarantees. K2 produces code with 6--26% reduced size, 1.36%--55.03% lower average packet-processing latency, and 0--4.75% higher throughput (packets per second per core) relative to the best clang-compiled program, across benchmarks drawn from Cilium, Facebook, and the Linux kernel. K2 incorporates several domain-specific techniques to make synthesis practical by accelerating equivalence-checking of BPF programs by 6 orders of magnitude.more » « less
-
Programming by example allows users to create programs without coding, by simply specifying input and output pairs.We introduce the problem of digital signal processing programming by example (DSP-PBE), where users specify input and output wave files, and a tool automatically synthesizes a program that transforms the input to the output. This program can then be applied to new wave files, giving users a new way to interact with music and program code. We formally define the problem of DSP-PBE, and provide a first implementation of a solution that can handle synthesis over commutative filters.more » « less
An official website of the United States government

