Abstract Planktonic calcifying organisms play a key role in regulating ocean carbonate chemistry and atmospheric CO2. Surprisingly, references to the absolute and relative contribution of these organisms to calcium carbonate production are lacking. Here we report quantification of pelagic calcium carbonate production in the North Pacific, providing new insights on the contribution of the three main planktonic calcifying groups. Our results show that coccolithophores dominate the living calcium carbonate (CaCO3) standing stock, with coccolithophore calcite comprising ~90% of total CaCO3production, and pteropods and foraminifera playing a secondary role. We show that pelagic CaCO3production is higher than the sinking flux of CaCO3at 150 and 200 m at ocean stations ALOHA and PAPA, implying that a large portion of pelagic calcium carbonate is remineralised within the photic zone; this extensive shallow dissolution explains the apparent discrepancy between previous estimates of CaCO3production derived from satellite observations/biogeochemical modeling versus estimates from shallow sediment traps. We suggest future changes in the CaCO3cycle and its impact on atmospheric CO2will largely depend on how the poorly-understood processes that determine whether CaCO3is remineralised in the photic zone or exported to depth respond to anthropogenic warming and acidification.
more »
« less
Carbonate mineral identification and quantification in sediment matrices using diffuse reflectance infrared Fourier transform spectroscopy
Abstract Carbonate minerals are a major reservoir in the global carbon cycle and a key player in the sequestration and emission of atmospheric CO 2 . In addition to the minerals’ frequent use in agriculture and construction, carbonate formation has been targeted for anthropogenic CO 2 sequestration. Due to carbonate’s importance in geological and anthropogenic realms, research on carbonate characterization and quantification is of interest. Here, we demonstrate a method to identify and quantify calcite (CaCO 3 ) and dolomite (CaMg(CO 3 ) 2 ) in sediment matrices using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Needing only a few minutes per sample, DRIFTS is a rapid technique that does not require hazardous chemicals and does not destroy samples during analysis. We selected the 2515 ± 9 cm −1 absorbance bands for quantification as they exhibited little interference from sediment matrix minerals and large peak areas relative to other bands. The DRIFTS technique was compared to the traditional acidification headspace analysis method on artificial mixtures of sediment and carbonate as well as natural lake bed and river bank samples from the Upper Sangamon River Basin in Illinois, USA. DRIFTS offers an additional advantage over acidification in that it permits carbonate mineral identification simultaneously with its quantification. Though DRIFTS estimates were higher, a good correlation was found between DRIFTS and acidification estimates for both lake sediments ( R 2 = 0.99) and bank samples ( R 2 = 0.92), indicating DRIFTS is a reliable method for carbonate quantification in sediment matrices.
more »
« less
- Award ID(s):
- 2012850
- PAR ID:
- 10433586
- Date Published:
- Journal Name:
- Environmental Chemistry Letters
- Volume:
- 18
- Issue:
- 5
- ISSN:
- 1610-3653
- Page Range / eLocation ID:
- 1725 to 1730
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Oceanic uptake of anthropogenic carbon dioxide (CO 2 ) from the atmosphere has changed ocean biogeochemistry and threatened the health of organisms through a process known as ocean acidification (OA). Such large-scale changes affect ecosystem functions and can have impacts on societal uses, fisheries resources, and economies. In many large estuaries, anthropogenic CO 2 -induced acidification is enhanced by strong stratification, long water residence times, eutrophication, and a weak acid–base buffer capacity. In this article, we review how a variety of processes influence aquatic acid–base properties in estuarine waters, including coastal upwelling, river–ocean mixing, air–water gas exchange, biological production and subsequent aerobic and anaerobic respiration, calcium carbonate (CaCO 3 ) dissolution, and benthic inputs. We emphasize the spatial and temporal dynamics of partial pressure of CO 2 ( pCO 2 ), pH, and calcium carbonate mineral saturation states. Examples from three large estuaries—Chesapeake Bay, the Salish Sea, and Prince William Sound—are used to illustrate how natural and anthropogenic processes and climate change may manifest differently across estuaries, as well as the biological implications of OA on coastal calcifiers.more » « less
-
Abstract The Loop Current is a key component of global circulation via the northward transport of warm, salty water, and an important influence on Gulf of Mexico hydrography. Understanding how the Loop Current will respond to ongoing anthropogenic warming is critically important, but the history of the Loop Current is poorly known. Here, we present the results of a high resolution (3–8 m) multichannel seismic survey of pelagic carbonate sediment drifts on the eastern Campeche Bank associated with the Loop Current. We identify three seismic megasequences: Megasequence A is a Lower Cretaceous carbonate platform, Megasequence B comprises Cretaceous to lower Cenozoic pelagic carbonates with weak/no contour current flow, and Megasequence C comprises a series of large (100s of m thick) contourite drifts representing the inception and history of the Loop Current. The base of the contourites is marked by a regionally mappable unconformity eroding underling strata, sometimes incising hundreds of meters. The drifts contain a succession of sequence sets separated from each other by regional unconformities and comprising plastered drifts and massive mounded drifts, which characterize modern deposition with active moats on the seafloor. A lack of sediment cores in the study area precludes age determination of these drifts, except for the youngest (Late Pleistocene). Comparison to legacy seismic lines across Deep Sea Drilling Project Site 95, outside our study area, implies that the base of Megasequence C is Oligocene in age, and that the Loop Current developed during the global reorganization of ocean circulation around the Eocene‐Oligocene Transition.more » « less
-
null (Ed.)Inorganic carbonate can be an important component of atmospheric particulate matter in arid environments where mineral dust components contribute significantly to air particulate matter. Carbonate carbon (CC) is only rarely quantified in atmospheric studies and methods to quantify carbonate in atmospheric samples are rare. In this manuscript, we present a novel protocol for quantifying carbonate carbon in atmospheric particulate matter samples, through the acidification of aerosol filters at ambient pressure and temperature and subsequent measurement of carbon dioxide (CO2) released upon acidification. This method is applicable to a variety of filter media used in air pollution studies, such as Teflon, cellulose, or glass fiber filters. The method allows the customization of the filter area used for analysis (up to 24 cm2) so that sufficient CO2 can be detected when released and to assure that the sample aliquot is representative of the whole filter. The resulting detection limits can be as low as 0.12 µg/cm2. The analysis of a known amount of sodium bicarbonate applied to a filter resulted in a relative error within 15% of the known mass of bicarbonate when measured 20 min after acidification. A particulate matter sample with aerodynamic diameter larger than 2.5 µm (PM>2.5) collected via cascade impaction on a high-volume aerosol sampler yielded good precision, with a CC concentration of 4.4 ± 0.3 µgC/cm2 for six replicates. The precision, accuracy, and reproducibility of this method of CC measurement make it a good alternative to existing quantification methods.more » « less
-
During International Ocean Discovery Program Expedition 354, seven sites were drilled along a 320 km east–west transect at 8°N, constituting a relic of the Neogene sediment record of Himalayan erosion. Bengal Fan is one of the largest deep-sea fans in the world where turbiditic sediments issued from the Ganga and Brahmaputra River Delta and originally supplied by the Himalayan erosion of silicate and carbonate lithologies are deposited and stored. Quantification of the chemical composition of silicates and carbonates is necessary to understand the tectonoclimatic history of this region. This report presents the major and trace element concentrations of silicate and carbonate fractions of selected turbiditic samples from Sites U1450 and U1451. Efficient washing followed by refined acid leaching of the sediments was performed to eliminate sea salts and carbonates from these marine sediment samples. Shipboard samples show 20%–40% excess sodium concentration associated with sea salt derived from pore water. Weak acid treatment limits the total carbonate content in the samples to less than 0.1%. Depletion of major and trace elements observed due to acid leaching is attributed to the dissolution of carbonates and cations associated with Fe-Mn oxyhydroxides.more » « less
An official website of the United States government

