skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Blockchain-based Approach to thwart Replay Attacks targeting Remote Keyless Entry Systems
Remote Keyless Entry (RKE) is a revolutionary technology that allows drivers to gain access to their vehicles using a wireless key fob operating on short-range radio waves. This technology offers numerous advantages for drivers, but it is still vulnerable to serious security threats which target the interactions between the fob and car, which may eventually result in car theft. In this paper, we propose a blockchain-based approach to thwart replay attacks targeting cars equipped with RKE systems. We consider the key fob and the car as two separate users of a private blockchain in which a miner authenticates the key fob with the corresponding car to grant or deny access using a smart contract. We validate our findings by a performance evaluation of the time taken by the miner to validate the access to the vehicle.  more » « less
Award ID(s):
2011689
PAR ID:
10433658
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2022 International Conference on Engineering and Emerging Technologies (ICEET)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As Blockchain technology become more understood in recent years and its capability to solve enterprise business use cases become evident, technologist have been exploring Blockchain technology to solve use cases that have been daunting industries for years. Unlike existing technologies, one of the key features of blockchain technology is its unparalleled capability to provide, traceability, accountability and immutable records that can be accessed at any point in time. One application area of interest for blockchain is securing heterogenous networks. This paper explores the security challenges in a heterogonous network of IoT devices and whether blockchain can be a viable solution. Using an experimental approach, we explore the possibility of using blockchain technology to secure IoT devices, validate IoT device transactions, and establish a chain of trust to secure an IoT device mesh network, as well as investigate the plausibility of using immutable transactions for forensic analysis. 
    more » « less
  2. In blockchain and cryptocurrency, miners participate in a proof-of-work-based distributed consensus protocol to find and generate a valid block, process transactions, and earn the corresponding reward. Because cryptocurrency is designed to adapt to the dynamic miner network size, a miner's participation affects the block difficulty which sets the expected amount of work to find a valid block. We study the dependency between the mining power control and the block difficulty and study a rational miner utilizing such dependency to dynamically control its mining power over a longer horizon than just the impending block. More specifically, we introduce I-O Mining strategy where a miner takes advantage of the block difficulty adjustment rule and toggles between mining with full power and power off between the difficulty adjustments. In I-O Mining, the miner influences the block difficulty and mines only when the difficulty is low, gaming and violating the design integrity of the mining protocol for its profit gain. We analyze the I-O Mining's incentive/profit gain over the static-mining strategies and its negative impact on the rest of the blockchain mining network in the block/transaction scalability. Our results show that I-O Mining becomes even more effective and profitable as there are greater competitions for mining and the reward and the cost difference becomes smaller, which are the trends in cryptocurrencies. 
    more » « less
  3. Calciu, Irina; Kuenning, Geoff (Ed.)
    We present RAINBLOCK, a public blockchain that achieves high transaction throughput without modifying the proof-ofwork consensus. The chief insight behind RAINBLOCK is that while consensus controls the rate at which new blocks are added to the blockchain, the number of transactions in each block is limited by I/O bottlenecks. Public blockchains like Ethereum keep the number of transactions in each block low so that all participating servers (miners) have enough time to process a block before the next block is created. By removing the I/O bottlenecks in transaction processing, RAINBLOCK allows miners to process more transactions in the same amount of time. RAINBLOCK makes two novel contributions: the RAINBLOCK architecture that removes I/O from the critical path of processing transactions (txs), and the distributed, multiversioned DSM-TREE data structure that stores the system state efficiently. We evaluate RAINBLOCK using workloads based on public Ethereum traces (including smart contracts). We show that a single RAINBLOCK miner processes 27.4K txs per second (27× higher than a single Ethereum miner). In a geo-distributed setting with four regions spread across three continents, RAINBLOCK miners process 20K txs per second. 
    more » « less
  4. Blockchain relies on the underlying peer-to-peer (P2P) networking to broadcast and get up-to-date on the blocks and transactions. Because of the blockchain operations’ reliance on the information provided by P2P networking, it is imperative to have high P2P connectivity for the quality of the blockchain system operations and performances. High P2P networking connectivity ensures that a peer node is connected to multiple other peers providing a diverse set of observers of the current state of the blockchain and transactions. However, in a permissionless Bitcoin cryptocurrency network, using the peer identifiers – including the current approach of counting the number of distinct IP addresses and port numbers – can be ineffective in measuring the number of peer connections and estimating the networking connectivity. Such current approach is further challenged by the networking threats manipulating identities. We build a robust estimation engine for the P2P networking connectivity by sensing and processing the P2P networking traffic. We take a systematic approach to study our engine and analyze the followings: the different components of the connectivity estimation engine and how they affect the accuracy performances, the role and the effectiveness of an outlier detection to enhance the connectivity estimation, and the engine’s interplay with the Bitcoin protocol. We implement a working Bitcoin prototype connected to the Bitcoin mainnet to validate and improve our engine’s performances and evaluate the estimation accuracy and cost efficiency of our connectivity estimation engine. Our results show that our scheme effectively counters the identity-manipulations threats, achieves 96.4% estimation accuracy with a tolerance of one peer connection, and is lightweight in the overheads in the mining rate, thus making it appropriate for the miner deployment. 
    more » « less
  5. This paper explores the feasibility of using blockchain technology to validate that measured sensor data approximately follows a known accepted model to enhance sensor data security in electricity grid systems. This provides a more robust information infrastructure that can be secured against not only failures but also malicious attacks. Such robustness is valuable in envisioned electricity grids that are distributed at a global scale including both small and large nodes. While this may be valuable, blockchain’s security benefits come at the cost of computation of cryptographic functions and the cost of reaching distributed consensus. We report experimental results showing that, for the proposed application and assumptions, the time for these computations is small enough to not negatively impact the overall system operation. From this we conclude that it is indeed worthwhile to further study the application of blockchain technology in the electricity grid, removing the assumptions we make and integrating blockchain in a much more extensive manner. To the best of our knowledge, this is the first instance where blockchain is used to validate the measured sensor data in the electricity grid thus providing security to other system operations. 
    more » « less