Abstract The vertical profile of clear-sky radiative cooling places important constraints on the vertical structure of convection and associated clouds. Simple theory using the cooling-to-space approximation is presented to indicate that the cooling rate in the upper troposphere should increase with surface temperature. The theory predicts how the cooling rate depends on lapse rate in an atmosphere where relative humidity remains approximately a fixed function of temperature. Radiative cooling rate is insensitive to relative humidity because of cancellation between the emission and transmission of radiation by water vapor. This theory is tested with one-dimensional radiative transfer calculations and radiative-convective equilibrium simulations. For climate simulations that produce an approximately moist adiabatic lapse rate, the radiative cooling profile becomes increasingly top-heavy with increasing surface temperature. If the temperature profile warms more slowly than a moist adiabatic profile in mid-troposphere, then the cooling rate in the upper troposphere is reduced and that in the lower troposphere is increased. This has important implications for convection, clouds and associated deep and shallow circulations.
more »
« less
How Close Are Leading Tropical Tropospheric Temperature Perturbations to Those under Convective Quasi Equilibrium?
Abstract In convective quasi-equilibrium theory, tropical tropospheric temperature perturbations are expected to follow vertical profiles constrained by convection, referred to as A-profiles here, often approximated by perturbations of moist adiabats. Differences between an idealized A-profile based on moist-static energy conservation and temperature perturbations derived from entraining and nonentraining parcel computations are modest under convective conditions—deep convection mostly occurs when the lower troposphere is close to saturation, thus minimizing the impact of entrainment on tropospheric temperature. Simple calculations with pseudoadiabatic perturbations about the observed profile thus provide useful baseline A-profiles. The first EOF mode of tropospheric temperature (TEOF1) from the ERA-Interim and AIRS retrievals below the level of neutral buoyancy (LNB) is compared with these A-profiles. The TEOF1 profiles with high LNB, typically above 400 hPa, yield high vertical spatial correlation (∼0.9) with A-profiles, indicating that tropospheric temperature perturbations tend to be consistent with the quasi-equilibrium assumption where the environment is favorable to deep convection. Lower correlation tends to occur in regions with low climatological LNB, less favorable to deep convection. Excluding temperature profiles with low LNB significantly increases the tropical mean vertical spatial correlation. The temperature perturbations near LNB exhibit negative deviations from the A-profiles—the convective cold-top phenomenon—with greater deviation for higher LNB. In regions with lower correlation, the deviation from A-profile shows an S-like shape beneath 600 hPa, usually accompanied by a drier lower troposphere. These findings are robust across a wide range of time scales from daily to monthly, although the vertical spatial correlation and TEOF1 explained variance tend to decrease on short time scales.
more »
« less
- Award ID(s):
- 1936810
- PAR ID:
- 10433751
- Date Published:
- Journal Name:
- Journal of the Atmospheric Sciences
- Volume:
- 79
- Issue:
- 9
- ISSN:
- 0022-4928
- Page Range / eLocation ID:
- 2307 to 2321
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Observations have shown that tropical convection is influenced by fluctuations in temperature and moisture in the lower free troposphere (LFT; 600–850 hPa), as well as moist enthalpy (ME) fluctuations beneath the 850 hPa level, referred to as the deep boundary layer (DBL; 850–1000 hPa). A framework is developed that consolidates these three quantities within the context of the buoyancy of an entraining plume. A “plume buoyancy equation” is derived based on a relaxed version of the weak temperature gradient (WTG) approximation. Analysis of this equation using quantities derived from the Dynamics of the Madden–Julian Oscillation (DYNAMO) sounding array data reveals that processes occurring within the DBL and the LFT contribute nearly equally to the evolution of plume buoyancy, indicating that processes that occur in both layers are critical to the evolution of tropical convection. Adiabatic motions play an important role in the evolution of buoyancy both at the daily and longer time scales and are comparable in magnitude to horizontal moisture advection and vertical moist static energy advection by convection. The plume buoyancy equation may explain convective coupling at short time scales in both temperature and moisture fluctuations and can be used to complement the commonly used moist static energy budget, which emphasizes the slower evolution of the convective envelope in tropical motion systems.more » « less
-
Simple process models and complex climate models are remarkably sensitive to the time scale of convective adjustment τ, but this parameter remains poorly constrained and understood. This study uses the linear-range slope of a semiempirical relationship between precipitation and a lower-free-tropospheric buoyancy measure BL. The BLmeasure is a function of layer-averaged moist enthalpy in the boundary layer (150-hPa-thick layer above surface), and temperature and moisture in the lower free troposphere (boundary layer top to 500 hPa). Sensitivity parameters with units of time quantify the BLresponse to its component perturbations. In moist enthalpy units, BLis more sensitive to temperature than equivalent moisture perturbations. However, column-integrated moist static energy conservation ensures that temperature and moisture are equally altered during the adjustment process. Multiple adjusted states with different temperature–moisture combinations exist; the BLsensitivity parameters govern the relationship between adjusted states, and also combine to yield a time scale of convective adjustment ~2 h. This value is comparable to τ values used in cumulus parameterization closures. Disparities in previously reported values of τ are attributed to the neglect of the temperature contribution to precipitation, and to averaging operations that include data from both precipitating and nonprecipitating regimes. A stochastic model of tropical convection demonstrates how either averaging operations or neglected environmental influences on precipitation can yield τ estimates longer than the true τ value built into the model. The analysis here culminates in construction of a precipitation closure with both moisture and temperature adjustment ( q– T closure), suitable for use in both linearized and nonlinear, intermediate-complexity models.more » « less
-
Abstract The transition to deep convection and associated precipitation is often studied in relationship to the associated column water vapor owing to the wide availability of these data from various ground or satellite-based products. Based on radiosonde and ground-based Global Navigation Satellite System (GNSS) data examined at limited locations and model comparison studies, water vapor at different vertical levels is conjectured to have different relationships to convective intensity. Here, the relationship between precipitation and water vapor in different free tropospheric layers is investigated using globally distributed GNSS radio occultation (RO) temperature and moisture profiles collocated with GPM IMERG precipitation across the tropical latitudes. A key feature of the RO measurement is its ability to directly sense in and near regions of heavy precipitation and clouds. Sharp pickups (i.e. sudden increases) of conditionally averaged precipitation as a function of water vapor in different tropospheric layers are noted for a variety of tropical ocean and land regions. The layer-integrated water vapor value at which this pickup occurs has a dependence on temperature that is more complex than constant RH, with larger subsaturation at warmer temperatures. These relationships of precipitation to its thermodynamic environment for different layers can provide a baseline for comparison with climate model simulations of the convective onset. Furthermore, vertical profiles before, during, and after convection are consistent with the hypothesis that the lower troposphere plays a causal role in the onset of convection, while the upper troposphere is moistened by de-trainment from convection.more » « less
-
Abstract A plume model applied to radiosonde observations and the fifth generation ECMWF atmospheric reanalysis (ERA5) is used to assess the relative importance of lower-tropospheric moisture and temperature variability in the convective coupling of equatorial waves. Regression and wavenumber–frequency coherence analyses of satellite precipitation, outgoing longwave radiation (OLR), and plume model estimates of lower-tropospheric vertically integrated buoyancy (〈B〉) are used to identify the spatial and temporal scales where these variables are highly correlated. Precipitation and OLR show little coherence with 〈B〉 when zero entrainment is prescribed in the plume model. In contrast, precipitation and OLR vary coherently with 〈B〉 when “deep inflow” entrainment is prescribed, highlighting that entrainment occurring over a deep layer of the lower troposphere plays an important role in modifying the thermodynamic properties of convective plumes in the tropics. Consistent with previous studies, moisture variability is found to play a more dominant role than temperature variability in the convective coupling of the Madden–Julian oscillation (MJO) and equatorial Rossby (ER) waves, while temperature variability is found to play an important role in the convective coupling of Kelvin (KW) and inertio-gravity (IG) waves. Convective coupling is most strongly impacted by moisture variations in the 925–850- and 825–600-hPa layers for the MJO and ERs, and by 825–600-hPa temperature variations in KWs and IGs, with 1000–950-hPa moist static energy variations playing a relatively small role in convective coupling. Simulations of the Energy Exascale Earth System Model (E3SM), version 2, and a preoperational prototype of NOAA Global Forecast System (GFS) V17 are examined, the former showing unrealistically high coherence between precipitation and 1000-hPa moist static energy, the latter a more realistic relationship.more » « less
An official website of the United States government

