skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Plume Model Assessment of the Convective Coupling of Equatorial Waves
Abstract A plume model applied to radiosonde observations and the fifth generation ECMWF atmospheric reanalysis (ERA5) is used to assess the relative importance of lower-tropospheric moisture and temperature variability in the convective coupling of equatorial waves. Regression and wavenumber–frequency coherence analyses of satellite precipitation, outgoing longwave radiation (OLR), and plume model estimates of lower-tropospheric vertically integrated buoyancy (〈B〉) are used to identify the spatial and temporal scales where these variables are highly correlated. Precipitation and OLR show little coherence with 〈B〉 when zero entrainment is prescribed in the plume model. In contrast, precipitation and OLR vary coherently with 〈B〉 when “deep inflow” entrainment is prescribed, highlighting that entrainment occurring over a deep layer of the lower troposphere plays an important role in modifying the thermodynamic properties of convective plumes in the tropics. Consistent with previous studies, moisture variability is found to play a more dominant role than temperature variability in the convective coupling of the Madden–Julian oscillation (MJO) and equatorial Rossby (ER) waves, while temperature variability is found to play an important role in the convective coupling of Kelvin (KW) and inertio-gravity (IG) waves. Convective coupling is most strongly impacted by moisture variations in the 925–850- and 825–600-hPa layers for the MJO and ERs, and by 825–600-hPa temperature variations in KWs and IGs, with 1000–950-hPa moist static energy variations playing a relatively small role in convective coupling. Simulations of the Energy Exascale Earth System Model (E3SM), version 2, and a preoperational prototype of NOAA Global Forecast System (GFS) V17 are examined, the former showing unrealistically high coherence between precipitation and 1000-hPa moist static energy, the latter a more realistic relationship.  more » « less
Award ID(s):
2225956 2225954
PAR ID:
10631977
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Journal of Atmospheric Sciences
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
82
Issue:
9
ISSN:
0022-4928
Page Range / eLocation ID:
1799 to 1814
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Observations have shown that tropical convection is influenced by fluctuations in temperature and moisture in the lower free troposphere (LFT; 600–850 hPa), as well as moist enthalpy (ME) fluctuations beneath the 850 hPa level, referred to as the deep boundary layer (DBL; 850–1000 hPa). A framework is developed that consolidates these three quantities within the context of the buoyancy of an entraining plume. A “plume buoyancy equation” is derived based on a relaxed version of the weak temperature gradient (WTG) approximation. Analysis of this equation using quantities derived from the Dynamics of the Madden–Julian Oscillation (DYNAMO) sounding array data reveals that processes occurring within the DBL and the LFT contribute nearly equally to the evolution of plume buoyancy, indicating that processes that occur in both layers are critical to the evolution of tropical convection. Adiabatic motions play an important role in the evolution of buoyancy both at the daily and longer time scales and are comparable in magnitude to horizontal moisture advection and vertical moist static energy advection by convection. The plume buoyancy equation may explain convective coupling at short time scales in both temperature and moisture fluctuations and can be used to complement the commonly used moist static energy budget, which emphasizes the slower evolution of the convective envelope in tropical motion systems. 
    more » « less
  2. Simple process models and complex climate models are remarkably sensitive to the time scale of convective adjustment τ, but this parameter remains poorly constrained and understood. This study uses the linear-range slope of a semiempirical relationship between precipitation and a lower-free-tropospheric buoyancy measure BL. The BLmeasure is a function of layer-averaged moist enthalpy in the boundary layer (150-hPa-thick layer above surface), and temperature and moisture in the lower free troposphere (boundary layer top to 500 hPa). Sensitivity parameters with units of time quantify the BLresponse to its component perturbations. In moist enthalpy units, BLis more sensitive to temperature than equivalent moisture perturbations. However, column-integrated moist static energy conservation ensures that temperature and moisture are equally altered during the adjustment process. Multiple adjusted states with different temperature–moisture combinations exist; the BLsensitivity parameters govern the relationship between adjusted states, and also combine to yield a time scale of convective adjustment ~2 h. This value is comparable to τ values used in cumulus parameterization closures. Disparities in previously reported values of τ are attributed to the neglect of the temperature contribution to precipitation, and to averaging operations that include data from both precipitating and nonprecipitating regimes. A stochastic model of tropical convection demonstrates how either averaging operations or neglected environmental influences on precipitation can yield τ estimates longer than the true τ value built into the model. The analysis here culminates in construction of a precipitation closure with both moisture and temperature adjustment ( q– T closure), suitable for use in both linearized and nonlinear, intermediate-complexity models. 
    more » « less
  3. null (Ed.)
    Abstract Using multiple independent satellite and reanalysis datasets, we compare relationships between mesoscale convective system (MCS) precipitation intensity P max , environmental moisture, large-scale vertical velocity, and system radius among tropical continental and oceanic regions. A sharp, nonlinear relationship between column water vapor and P max emerges, consistent with nonlinear increases in estimated plume buoyancy. MCS P max increases sharply with increasing boundary layer and lower free tropospheric (LFT) moisture, with the highest P max values originating from MCSs in environments exhibiting a peak in LFT moisture near 750 hPa. MCS P max exhibits strikingly similar behavior as a function of water vapor among tropical land and ocean regions. Yet, while the moisture– P max relationship depends strongly on mean tropospheric temperature, it does not depend on sea surface temperature over ocean or surface air temperature over land. Other P max -dependent factors include system radius, the number of convective cores, and the large-scale vertical velocity. Larger systems typically contain wider convective cores and higher P max , consistent with increased protection from dilution due to dry air entrainment and reduced reevaporation of precipitation. In addition, stronger large-scale ascent generally supports greater precipitation production. Last, temporal lead–lag analysis suggests that anomalous moisture in the lower–middle troposphere favors convective organization over most regions. Overall, these statistics provide a physical basis for understanding environmental factors controlling heavy precipitation events in the tropics, providing metrics for model diagnosis and guiding physical intuition regarding expected changes to precipitation extremes with anthropogenic warming. 
    more » « less
  4. Monthly-mean data of ERA-Interim reanalysis, precipitation, outgoing longwave radiation (OLR) and sea surface temperature(SST) are investigated for 40 years (1979-2018) to reveal the modulation of the global monsoon systems by the equatorial quasi-biennial oscillation (QBO), focusing only on the neutral El Niño-Southern Oscillation (ENSO) periods (in total 374 months). First, the climatology of the global monsoon systems is viewed with longitude-latitude plots of the precipitation, its proxies and lower tropospheric circulations for the annual mean and two solstice seasons, together with the composite differences between the two seasons. In addition to seasonal variations of Intertropical Convergence Zones (ITCZs), several regional monsoon systems are well identified with an anti-phase of the annual cycle between the two hemispheres. Precipitation-related quantities (OLR and specific humidity), surface conditions [i.e., mean sea level pressure (MSLP) and SST] and circulation fields related to moist convection systems show fundamental features of the global monsoon systems. After introducing eight QBO phases based on the leading two principal components of the zonal-mean zonal wind variations in the equatorial lower-stratosphere, the statistical significance of the composite difference in the precipitation and tropospheric circulation is evaluated for the opposite QBO phases. The composite differences show significant modulations in some regional monsoon systems, dominated by zonally asymmetric components, with the largest magnitudes for specific QBO-phases corresponding to traditional indices of the equatorial zonal-mean zonal wind at 20 and 50 hPa. Along the equator, significant QBO influence is characterized by the modulation of the Walker circulation over the western Pacific. In middle latitudes during boreal summer, for a specific QBO-phase, statistically significant modulation of low-pressure cyclonic perturbation is obtained over the Northern-Hemisphere western Pacific Ocean associated with statistically significant features of heavier precipitation over the eastern side of the cyclonic perturbation and the opposite lighter precipitation over the western side. During boreal winter, similar significant low-pressure cyclonic perturbations were found over the Northern-Hemisphere eastern Pacific and Atlantic Oceans for specific phases. 
    more » « less
  5. Abstract In convective quasi-equilibrium theory, tropical tropospheric temperature perturbations are expected to follow vertical profiles constrained by convection, referred to as A-profiles here, often approximated by perturbations of moist adiabats. Differences between an idealized A-profile based on moist-static energy conservation and temperature perturbations derived from entraining and nonentraining parcel computations are modest under convective conditions—deep convection mostly occurs when the lower troposphere is close to saturation, thus minimizing the impact of entrainment on tropospheric temperature. Simple calculations with pseudoadiabatic perturbations about the observed profile thus provide useful baseline A-profiles. The first EOF mode of tropospheric temperature (TEOF1) from the ERA-Interim and AIRS retrievals below the level of neutral buoyancy (LNB) is compared with these A-profiles. The TEOF1 profiles with high LNB, typically above 400 hPa, yield high vertical spatial correlation (∼0.9) with A-profiles, indicating that tropospheric temperature perturbations tend to be consistent with the quasi-equilibrium assumption where the environment is favorable to deep convection. Lower correlation tends to occur in regions with low climatological LNB, less favorable to deep convection. Excluding temperature profiles with low LNB significantly increases the tropical mean vertical spatial correlation. The temperature perturbations near LNB exhibit negative deviations from the A-profiles—the convective cold-top phenomenon—with greater deviation for higher LNB. In regions with lower correlation, the deviation from A-profile shows an S-like shape beneath 600 hPa, usually accompanied by a drier lower troposphere. These findings are robust across a wide range of time scales from daily to monthly, although the vertical spatial correlation and TEOF1 explained variance tend to decrease on short time scales. 
    more » « less