skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metrics for Evaluating CMIP6 Representation of Daily Precipitation Probability Distributions
Abstract The performance of GCMs in simulating daily precipitation probability distributions is investigated by comparing 35 CMIP6 models against observational datasets (TRMM-3B42 and GPCP). In these observational datasets, PDFs on wet days follow a power-law range for low and moderate intensities below a characteristic precipitation cutoff scale. Beyond the cutoff scale, the probability drops much faster, hence controlling the size of extremes in a given climate. In the satellite products analyzed, PDFs have no interior peak. Contributions to the first and second moments tend to be single-peaked, implying a single dominant precipitation scale; the relationship to the cutoff scale and log-precipitation coordinate and normalization of frequency density are outlined. Key metrics investigated include the fraction of wet days, PDF power-law exponent, cutoff scale, shape of probability distributions, and number of probability peaks. The simulated power-law exponent and cutoff scale generally fall within observational bounds, although these bounds are large; GPCP systematically displays a smaller exponent and cutoff scale than TRMM-3B42. Most models simulate a more complex PDF shape than these observational datasets, with both PDFs and contributions exhibiting additional peaks in many regions. In most of these instances, one peak can be attributed to large-scale precipitation and the other to convective precipitation. Similar to previous CMIP phases, most models also rain too often and too lightly. These differences in wet-day fraction and PDF shape occur primarily over oceans and may relate to deterministic scales in precipitation parameterizations. It is argued that stochastic parameterizations may contribute to simplifying simulated distributions.  more » « less
Award ID(s):
1936810
PAR ID:
10433753
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
35
Issue:
17
ISSN:
0894-8755
Page Range / eLocation ID:
5719 to 5743
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many astrophysical analyses depend on estimates of redshifts (a proxy for distance) determined from photometric (i.e., imaging) data alone. Inaccurate estimates of photometric redshift uncertainties can result in large systematic errors. However, probability distribution outputs from many photometric redshift methods do not follow the frequentist definition of a Probability Density Function (PDF) for redshift — i.e., the fraction of times the true redshift falls between two limits z1 and z2 should be equal to the integral of the PDF between these limits. Previous works have used the global distribution of Probability Integral Transform (PIT) values to re-calibrate PDFs, but offsetting inaccuracies in different regions of feature space can conspire to limit the efficacy of the method. We leverage a recently developed regression technique that characterizes the local PIT distribution at any location in feature space to perform a local re-calibration of photometric redshift PDFs resulting in calibrated predictive distributions. Though we focus on an example from astrophysics, our method can produce predictive distributions which are calibrated at all locations in feature space for any use case. 
    more » « less
  2. To assess deep convective parameterizations in a variety of GCMs and examine the fast-time-scale convective transition, a set of statistics characterizing the pickup of precipitation as a function of column water vapor (CWV), PDFs and joint PDFs of CWV and precipitation, and the dependence of the moisture–precipitation relation on tropospheric temperature is evaluated using the hourly output of two versions of the GFDL Atmospheric Model, version 4 (AM4), NCAR CAM5 and superparameterized CAM (SPCAM). The 6-hourly output from the MJO Task Force (MJOTF)/GEWEX Atmospheric System Study (GASS) project is also analyzed. Contrasting statistics produced from individual models that primarily differ in representations of moist convection suggest that convective transition statistics can substantially distinguish differences in convective representation and its interaction with the large-scale flow, while models that differ only in spatial–temporal resolution, microphysics, or ocean–atmosphere coupling result in similar statistics. Most of the models simulate some version of the observed sharp increase in precipitation as CWV exceeds a critical value, as well as that convective onset occurs at higher CWV but at lower column RH as temperature increases. While some models quantitatively capture these observed features and associated probability distributions, considerable intermodel spread and departures from observations in various aspects of the precipitation–CWV relationship are noted. For instance, in many of the models, the transition from the low-CWV, nonprecipitating regime to the moist regime for CWV around and above critical is less abrupt than in observations. Additionally, some models overproduce drizzle at low CWV, and some require CWV higher than observed for strong precipitation. For many of the models, it is particularly challenging to simulate the probability distributions of CWV at high temperature. 
    more » « less
  3. Budgets of turbulent kinetic energy (TKE) and turbulent potential energy (TPE) at different scales $$\ell$$ in sheared, stably stratified turbulence are analysed using a filtering approach. Competing effects in the flow are considered, along with the physical mechanisms governing the energy fluxes between scales, and the budgets are used to analyse data from direct numerical simulation at buoyancy Reynolds number $$Re_b=O(100)$$ . The mean TKE exceeds the TPE by an order of magnitude at the large scales, with the difference reducing as $$\ell$$ is decreased. At larger scales, buoyancy is never observed to be positive, with buoyancy always converting TKE to TPE. As $$\ell$$ is decreased, the probability of locally convecting regions increases, though it remains small at scales down to the Ozmidov scale. The TKE and TPE fluxes between scales are both downscale on average, and their instantaneous values are correlated positively, but not strongly so, and this occurs due to the different physical mechanisms that govern these fluxes. Moreover, the contributions to these fluxes arising from the sub-grid fields are shown to be significant, in addition to the filtered scale contributions associated with the processes of strain self-amplification, vortex stretching and density gradient amplification. Probability density functions (PDFs) of the $Q,R$ invariants of the filtered velocity gradient are considered and show that as $$\ell$$ increases, the sheared-drop shape of the PDF becomes less pronounced and the PDF becomes more symmetric about $R=0$ . 
    more » « less
  4. Many astrophysical analyses depend on estimates of redshifts (a proxy for distance) determined from photometric (i.e., imaging) data alone. Inaccurate estimates of photometric redshift uncertainties can result in large systematic errors. However, probability distribution outputs from many photometric redshift methods do not follow the frequentist definition of a Probability Density Function (PDF) for redshift -- i.e., the fraction of times the true redshift falls between two limits z1 and z2 should be equal to the integral of the PDF between these limits. Previous works have used the global distribution of Probability Integral Transform (PIT) values to re-calibrate PDFs, but offsetting inaccuracies in different regions of feature space can conspire to limit the efficacy of the method. We leverage a recently developed regression technique that characterizes the local PIT distribution at any location in feature space to perform a local re-calibration of photometric redshift PDFs. Though we focus on an example from astrophysics, our method can produce PDFs which are calibrated at all locations in feature space for any use case. 
    more » « less
  5. null (Ed.)
    We develop a simple Quantile Spacing (QS) method for accurate probabilistic estimation of one-dimensional entropy from equiprobable random samples, and compare it with the popular Bin-Counting (BC) and Kernel Density (KD) methods. In contrast to BC, which uses equal-width bins with varying probability mass, the QS method uses estimates of the quantiles that divide the support of the data generating probability density function (pdf) into equal-probability-mass intervals. And, whereas BC and KD each require optimal tuning of a hyper-parameter whose value varies with sample size and shape of the pdf, QS only requires specification of the number of quantiles to be used. Results indicate, for the class of distributions tested, that the optimal number of quantiles is a fixed fraction of the sample size (empirically determined to be ~0.25–0.35), and that this value is relatively insensitive to distributional form or sample size. This provides a clear advantage over BC and KD since hyper-parameter tuning is not required. Further, unlike KD, there is no need to select an appropriate kernel-type, and so QS is applicable to pdfs of arbitrary shape, including those with discontinuous slope and/or magnitude. Bootstrapping is used to approximate the sampling variability distribution of the resulting entropy estimate, and is shown to accurately reflect the true uncertainty. For the four distributional forms studied (Gaussian, Log-Normal, Exponential and Bimodal Gaussian Mixture), expected estimation bias is less than 1% and uncertainty is low even for samples of as few as 100 data points; in contrast, for KD the small sample bias can be as large as −10% and for BC as large as −50%. We speculate that estimating quantile locations, rather than bin-probabilities, results in more efficient use of the information in the data to approximate the underlying shape of an unknown data generating pdf. 
    more » « less