skip to main content


Title: Perception of and Response to a Haptic Device as a Function of Signal Complexity
Haptics devices have been developed in a wide range of form factors, actuation methods, and degrees of freedom, often with the goal of communicating information. While work has investigated the maximum rate and quantity of information that can be transferred through haptics, these measures often do not inform how humans will use the devices. In this work, we measure the differences between perception and use as it relates to signal complexity. Using an inflatable soft haptic display with four independently actuated pouches, we provide navigation directions to participants. The haptic device operates in three modalities, in increasing order of signal complexity: Cardinal, Ordinal, and Continuous. We first measure participants’ accuracy in perceiving continuous signals generated by the device, showing average errors below 5 deg. Participants then used the haptic device in each operating mode to guide an object towards a target in a 2-dimensional plane. Our results indicate that human’s use of haptic signals often lags significantly behind the displayed signal and is less accurate than their static perception. Additionally signal complexity was correlated with path efficiency but inversely correlated with movement speed, showing that even simple design changes create complex tradeoffs.  more » « less
Award ID(s):
2129155
NSF-PAR ID:
10434016
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE World Haptics Conference
ISSN:
2835-9518
Page Range / eLocation ID:
1-7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Immersive Virtual Environments (IVEs) incorporating tangibles are becoming more accessible. The success of applications combining 3D printed tangibles and VR often depends on how accurately size is perceived. Research has shown that visuo-haptic perceptual information is important in the perception of size. However, it is unclear how these sensory-perceptual channels are affected by immersive virtual environments that incorporate tangible objects. Towards understanding the effects of different sensory information channels in the near field size perception of tangibles of graspable sizes in IVEs, we conducted a between-subjects study evaluating the accuracy of size perception across three experimental conditions (Vision-only, Haptics-only, Vision and Haptics). We found that overall, participants consistently over-estimated the size of the dials regardless of the type of perceptual information that was presented. Participants in the haptics only condition overestimated diameters to a larger degree as compared to other conditions. Participants were most accurate in the vision only condition and least accurate in the haptics only condition. Our results also revealed that increased efficiency in reporting size over time was most pronounced in the visuo- haptic condition. 
    more » « less
  2. We propose a new class of haptic devices that provide haptic sensations by delivering liquid-stimulants to the user's skin; we call this chemical haptics. Upon absorbing these stimulants, which contain safe and small doses of key active ingredients, receptors in the user's skin are chemically triggered, rendering distinct haptic sensations. We identified five chemicals that can render lasting haptic sensations: tingling (sanshool), numbing (lidocaine), stinging (cinnamaldehyde), warming (capsaicin), and cooling (menthol). To enable the application of our novel approach in a variety of settings (such as VR), we engineered a self-contained wearable that can be worn anywhere on the user's skin (e.g., face, arms, legs). Implemented as a soft silicone patch, our device uses micropumps to push the liquid stimulants through channels that are open to the user's skin, enabling topical stimulants to be absorbed by the skin as they pass through. Our approach presents two unique benefits. First, it enables sensations, such as numbing, not possible with existing haptic devices. Second, our approach offers a new pathway, via the skin's chemical receptors, for achieving multiple haptic sensations using a single actuator, which would otherwise require combining multiple actuators (e.g., Peltier, vibration motors, electro-tactile stimulation). We evaluated our approach by means of two studies. In our first study, we characterized the temporal profiles of sensations elicited by each chemical. Using these insights, we designed five interactive VR experiences utilizing chemical haptics, and in our second user study, participants rated these VR experiences with chemical haptics as more immersive than without. Finally, as the first work exploring the use of chemical haptics on the skin, we offer recommendations to designers for how they may employ our approach for their interactive experiences. 
    more » « less
  3. In this paper, a learning module is introduced to teach undergraduate engineering students about the principles of haptics and inclusive design thinking through wearable technology. To that end, a novel wearable haptic (touch) device was created, referred to as the HapConnect, that contains modular vibration components for student teams to explore the use of haptics in a simple context, design and create their own versions of the device, and deploy it in a use-inspired setting. Through a series of lecture and hands-on design sessions, student teams were tasked with employing the HapConnect to navigate through a maze exclusively by the sense of touch. This paper evaluates student confidence in topics – such as haptics, human perception, wearable devices, and inclusive design – discussed throughout the module, feedback and performance of the HapConnect, and team design choices to complete their activity. Results indicate that student learning and confidence increased throughout the activity, while each team’s success in the maze was attributed to their differing design choices. 
    more » « less
  4. Abstract

    Skin-integrated haptic interfaces that can relay a wealth of information from the machine to the human are of great interest. However, existing haptic devices are not yet able to produce haptic cues that are compatible with the skin. In this work, we present the stretchable soft actuators for haptic feedback, which can match the perception range, spatial resolution, and stretchability of the skin. Pressure-amplification structures are fabricated using a scalable self-assembly process to ensure an output pressure beyond the skin perception threshold. Due to the minimized device size, the actuator array can be fabricated with a sufficiently high spatial resolution, which makes the haptic device applicable for skin locations with the highest spatial acuity. A haptic feedback system is demonstrated by employing the developed soft actuators and highly sensitive pressure sensors. Two proof-of-concept applications are developed to illustrate the capability of transferring information related to surface textures and object shapes acquired at the robot side to the user side.

     
    more » « less
  5. Haptic force feedback systems are unique in their ability to dynamically render physical representations. Although haptic devices have shown promise for supporting learning, prior work mainly describes results of haptic-supported learning without identifying underlying learning mechanisms. To this end, we designed a haptic-supported learning environment and analyzed four students who used it to make connections between two different mathematical representations of sine and cosine: the unit circle, and their graph on the Cartesian plane. We highlight moments where students made connections between the representations, and identify how the haptic feedback supported these moments of insight. We use this evidence in support of a proposed theoretical and design framework for educational haptics. This framework captures four types of haptic representations, and focuses on one -- the haptic bridge -- that effectively scaffolds sense-making with multiple representations. 
    more » « less