- Award ID(s):
- 1760247
- PAR ID:
- 10109160
- Date Published:
- Journal Name:
- Design and Characterization of an Open-Source Robotic Leg Prosthesis
- Page Range / eLocation ID:
- 111 to 118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Challenges associated with current prosthetic technologies limit the quality of life of lower-limb amputees. Passive prostheses lead amputees to walk slower, use more energy, fall more often, and modify their gait patterns to compensate for the prosthesis’ lack of net-positive mechanical energy. Robotic prostheses can provide mechanical energy, but may also introduce challenges through controller design. Fortunately, talented researchers are studying how to best control robotic leg prostheses, but the time and resources required to develop prosthetic hardware has limited their potential impact. Even after research is completed, comparison of results is confounded by the use of different, researcher-specific hardware. To address these issues, we have developed the Open-source Leg (OSL): a scalable robotic knee/ankle prosthesis intended to foster investigations of control strategies. This paper introduces the design goals, transmission selection, hardware implementation, and initial control benchmarks for the OSL. The OSL provides a common hardware platform for comparison of control strategies, lowers the barrier to entry for prosthesis research, and enables testing within the lab, community, and at home.more » « less
-
Today’s passive prosthetic technologies limit the well-being of millions of individuals with amputations, who often walk slower, use more energy, fall more often, and develop devastating secondary deficits over time. Robotic prostheses hold the promise to address many of these challenges, but safe, reliable control strategies have remained out of reach—that is, a critical gap is the ability to provide appropriate instructions to robotic legs that enable robust ambulation in the real world. Fortunately, there are many researchers studying control strategies, but each group tests their strategies with different robotic hardware in constrained laboratory settings. This mismatch in prosthesis hardware severely limits comparison of control solutions and, along with the lack of testing in real-world environments, hinders the translation of these promising technologies. To address these challenges, we developed the Open Source Leg (OSL): a robotic knee-ankle prosthesis that facilitates controls, biomechanics, and clinical research. This paper describes the design innovations required to develop a bionic leg for broad dissemination, characterization of the OSL’s electromechanical performance, and clinical demonstration with an advanced high-level control strategy, tested with three individuals with above-knee amputations. The OSL provides a common hardware platform for scientific studies and clinical testing, lowers the barrier for new prosthetics research, and enables research beyond the laboratory: in more realistic environments, such as the hospital, community, and home.more » « less
-
Abstract In individuals with lower-limb amputations, robotic prostheses can increase walking speed, and reduce energy use, the incidence of falls and the development of secondary complications. However, safe and reliable prosthetic-limb control strategies for robust ambulation in real-world settings remain out of reach, partly because control strategies have been tested with different robotic hardware in constrained laboratory settings. Here, we report the design and clinical implementation of an integrated robotic knee–ankle prosthesis that facilitates the real-world testing of its biomechanics and control strategies. The bionic leg is open source, it includes software for low-level control and for communication with control systems, and its hardware design is customizable, enabling reduction in its mass and cost, improvement in its ease of use and independent operation of the knee and ankle joints. We characterized the electromechanical and thermal performance of the bionic leg in benchtop testing, as well as its kinematics and kinetics in three individuals during walking on level ground, ramps and stairs. The open-source integrated-hardware solution and benchmark data that we provide should help with research and clinical testing of knee–ankle prostheses in real-world environments.
-
Amputees’ preferences for prosthesis settings are critical not only for their psychological well-being but also for long-term adherence to device adoption and health. Although active lower-limb prostheses can provide enhanced functionality than passive devices, little is known about the mechanism of preferences for settings in active devices. Therefore, a think-aloud study was conducted on three amputees to unravel their preferences for a powered robotic knee prosthesis during user-guided auto-tuning. The inductive thematic analysis revealed that amputee patients were more likely to use their own passive device rather than the intact leg as the reference for the natural walking that they were looking for in the powered device. There were large individual differences in factors influencing naturalness. The mental optimization of preference decisions was mostly based on the noticeableness of the differences between knee profiles. The implications on future design and research in active prostheses were discussed.
-
Prostheses help amputees to maintain physical health and quality of life. Prosthesis wearers’ satisfaction and adherence to the prosthesis are closely related to the preferences for prosthesis tuning settings. However, the underlying factors that contribute to the preferences were under-explored. In this study, two able-bodied participants were asked to change the robotic prosthesis settings to their preferred state and the think-aloud technique with a mixed-method approach was used to reveal the contributing factors of preferences. We found that physical perception (e.g., positions of the prosthetic foot, balance, and stability) and subjective feelings (e.g., comfortableness, satisfaction, confidence, and worries) were two major factors. Experiences with the intact leg and other profiles were used as anchors for their preference levels. Preferences may also differ with situational context such as walking speed. The saturation points were reached with no strong approach motivation. The implications for prosthesis design and research were discussed.