skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Miniature light-driven nanophotonic electron acceleration and control
Dielectric laser accelerators (DLAs) are fundamentally based on the interaction of photons with free electrons, where energy and momentum conservation are satisfied by mediation of a nanostructure. In this scheme, the photonic nanostructure induces near-fields which transfer energy from the photon to the electron, similar to the inverse-Smith–Purcell effect described in metallic gratings. This, in turn, may provide ground-breaking applications, as it is a technology promising to miniaturize particle accelerators down to the chip scale. This fundamental interaction can also be used to study and demonstrate quantum photon-electron phenomena. The spontaneous and stimulated Smith–Purcell effect and the photon-induced near-field electron-microscopy (PINEM) effect have evolved to be a fruitful ground for observing quantum effects. In particular, the energy spectrum of the free electron has been shown to have discrete energy peaks, spaced with the interacting photon energy. This energy spectrum is correlated to the photon statistics and number of photon exchanges that took place during the interaction. We give an overview of DLA and PINEM physics with a focus on electron phase-space manipulation.  more » « less
Award ID(s):
1734215
PAR ID:
10434062
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Advances in Optics and Photonics
Volume:
14
Issue:
4
ISSN:
1943-8206
Page Range / eLocation ID:
862
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The interaction between free electrons and photons in electron microscopes offers unique opportunities for microscopy and quantum science. For example, modulating electron beams with multiple laser excitations, researchers have demonstrated a novel near-field electron microscope, capable of probing electromagnetic excitations on the nanometer spatial scale and in the attosecond (10 −18 s) temporal range [see D. Nabben et al., Nature, 619, 63 (2023)]. Additionally, it has recently been demonstrated that the interaction between free electrons and photons in an electron microscope can be quantum coherent, and furthermore, this quantum coherence could potentially be leveraged for heralded sources of single electrons and photons [see A. Feist et al., Science, 377, 777 (2022)]. Although promising, these innovations in free-electron-photon interactions have thus far suffered a significant limitation: they require high-energy (>100-ke V) electron beams. Accordingly, these demonstrations have taken place in energetic (and expensive) transmission electron microscopes (TEMs). TEMs are a logical setting for these experiments, as their high-energy electrons can be velocity-matched to co-propagating photons in dielectric waveguides. However, achieving such velocity-matching between photons in conventional dielectric waveguides and electrons is not feasible for the low electron energies (<30-keV) in more common scanning electron microscope (SEMs). 
    more » « less
  2. Germanium is typically used for solid-state electronics, fiber-optics, and infrared applications, due to its semiconducting behavior at optical and infrared wavelengths. In contrast, here we show that the germanium displays metallic nature and supports propagating surface plasmons in the deep ultraviolet (DUV) wavelengths, that is typically not possible to achieve with conventional plasmonic metals such as gold, silver, and aluminum. We measure the photonic band spectrum and distinguish the plasmonic excitation modes: bulk plasmons, surface plasmons, and Cherenkov radiation using a momentum-resolved electron energy loss spectroscopy. The observed spectrum is validated through the macroscopic electrodynamic electron energy loss theory and first-principles density functional theory calculations. In the DUV regime, intraband transitions of valence electrons dominate over the interband transitions, resulting in the observed highly dispersive surface plasmons. We further employ these surface plasmons in germanium to design a DUV radiation source based on the Smith-Purcell effect. Our work opens a new frontier of DUV plasmonics to enable the development of DUV devices such as metasurfaces, detectors, and light sources based on plasmonic germanium thin films. 
    more » « less
  3. Optically active defects in 2D materials, such as hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDs), are an attractive class of single-photon emitters with high brightness, room-temperature operation, site-specific engineering of emitter arrays, and tunability with external strain and electric fields. In this work, we demonstrate a novel approach to precisely align and embed hBN and TMDs within background-free silicon nitride microring resonators. Through the Purcell effect, high-purity hBN emitters exhibit a cavity-enhanced spectral coupling efficiency up to 46% at room temperature, which exceeds the theoretical limit for cavity-free waveguide-emitter coupling and previous demonstrations by nearly an order-of-magnitude. The devices are fabricated with a CMOS-compatible process and exhibit no degradation of the 2D material optical properties, robustness to thermal annealing, and 100 nm positioning accuracy of quantum emitters within single-mode waveguides, opening a path for scalable quantum photonic chips with on-demand single-photon sources. 
    more » « less
  4. A central challenge in quantum networking is transferring quantum states between different physical modalities, such as between flying photonic qubits and stationary quantum memories. One implementation entails using spin–photon interfaces that combine solid-state spin qubits, such as color centers in diamond, with photonic nanostructures. However, while high-fidelity spin–photon interactions have been demonstrated on isolated devices, building practical quantum repeaters requires scaling to large numbers of interfaces yet to be realized. Here, we demonstrate integration of nanophotonic cavities containing tin-vacancy (SnV) centers in a photonic integrated circuit (PIC). Out of a six-channel quantum microchiplet (QMC), we find four coupled SnV-cavity devices with an average Purcell factor of ∼7. Based on system analyses and numerical simulations, we find with near-term improvements this multiplexed architecture can enable high-fidelity quantum state transfer, paving the way toward building large-scale quantum repeaters. 
    more » « less
  5. Compact laser plasma accelerators generate high-energy electron beams with increasing quality. When used in inverse Compton backscattering, however, the relatively large electron energy spread jeopardizes potential applications requiring small bandwidths. We present here a novel interaction scheme that allows us to compensate for the negative effects of the electron energy spread on the spectrum, by introducing a transverse spatial frequency modulation in the laser pulse. Such a laser chirp, together with a properly dispersed electron beam, can substantially reduce the broadening of the Compton bandwidth due to the electron energy spread. We show theoretical analysis and numerical simulations for hard X-ray Thomson sources based on laser plasma accelerators. 
    more » « less