skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chemistry–mechanics–geometry coupling in positive electrode materials: a scale-bridging perspective for mitigating degradation in lithium-ion batteries through materials design
Despite their rapid emergence as the dominant paradigm for electrochemical energy storage, the full promise of lithium-ion batteries is yet to be fully realized, partly because of challenges in adequately resolving common degradation mechanisms. Positive electrodes of Li-ion batteries store ions in interstitial sites based on redox reactions throughout their interior volume. However, variations in the local concentration of inserted Li-ions and inhomogeneous intercalation-induced structural transformations beget substantial stress. Such stress can accumulate and ultimately engender substantial delamination and transgranular/intergranular fracture in typically brittle oxide materials upon continuous electrochemical cycling. This perspective highlights the coupling between electrochemistry, mechanics, and geometry spanning key electrochemical processes: surface reaction, solid-state diffusion, and phase nucleation/transformation in intercalating positive electrodes. In particular, we highlight recent findings on tunable material design parameters that can be used to modulate the kinetics and thermodynamics of intercalation phenomena, spanning the range from atomistic and crystallographic materials design principles (based on alloying, polymorphism, and pre-intercalation) to emergent mesoscale structuring of electrode architectures (through control of crystallite dimensions and geometry, curvature, and external strain). This framework enables intercalation chemistry design principles to be mapped to degradation phenomena based on consideration of mechanics coupling across decades of length scales. Scale-bridging characterization and modeling, along with materials design, holds promise for deciphering mechanistic understanding, modulating multiphysics couplings, and devising actionable strategies to substantially modify intercalation phase diagrams in a manner that unlocks greater useable capacity and enables alleviation of chemo-mechanical degradation mechanisms.  more » « less
Award ID(s):
1809866
PAR ID:
10434127
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
14
Issue:
3
ISSN:
2041-6520
Page Range / eLocation ID:
458 to 484
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The battery chemistry must be diversified to achieve a sustainable energy landscape by effectively utilizing renewable energy sources. Alkali metal-ion, all-solid-state, metal-air batteries, and multivalent batteries offer unique cost, safety, raw material abundance, energy, and power density solutions. However, realizing these “Beyond Li-ion batteries” must uncover their working principles and performance & property relationship. In this aspect, mitigating chemo-mechanical instabilities in the structure and surface of the electrodes plays a crucial role in their performance. Unfortunately, the coupling between electrochemical and mechanical interactions is often poorly understood due to a lack of operando characterization. This review article explains the working principles of curvature measurement and digital image correlation for measuring stress and strain generations in battery materials. We provided specific examples of how these operando mechanical measurements shed light on instabilities in alkali-metal ion electrodes, solid electrolytes, Li-O2 batteries, and aqueous Zn-ion batteries. Operando mechanical measurements offer an effective way to map changes in the physical fingerprint of the battery materials, therefore providing crucial information to elucidate instabilities in battery materials. 
    more » « less
  2. Abstract Two-dimensional materials (2DM) and their heterostructures (2D + nD, where n = 0, 1, 2, 3) hold significant promise for electrochemical energy storage systems (EESS), such as batteries. 2DM can act as van der Waals (vdW) slick interfaces between conventional active materials (e.g., silicon) and current collectors, enhancing interfacial adhesion and mitigating stress-induced fractures. They can also serve as alternatives to traditional polymer binders (e.g., MXenes), highlighting the importance of interfacial mechanics between 2DM and active materials. During charge/discharge cycles, intercalation and deintercalation processes substantially affect the mechanical behavior of 2DM used as binders, collectors, or electrodes. For example, porous graphene networks have demonstrated capacities up to five times greater than traditional graphite anodes. However, modeling 2DM in EESS remains challenging due to the complex coupling between electrochemistry and mechanics. Defective graphene, for instance, promotes strong adatom adsorption (e.g., Li⁺), which can hinder desorption during discharge, thereby influencing mechanical properties. Despite the promise of 2DM, most current studies fall short in capturing these critical chemo-mechanical interactions. This perspective provides a comprehensive overview of recent advances in understanding the mechanical behavior of 2DM in EESS. It identifies key modeling challenges and outlines future research directions. Multiscale modeling approaches—including atomistic and molecular simulations, continuum mechanics, machine learning, and generative artificial intelligence—are discussed. This work aims to inspire deeper exploration of the chemo-mechanics of 2DM and offer valuable guidance for experimental design and optimization of 2DM-based EESS for practical applications. 
    more » « less
  3. Robust multivalent ion interaction in electrodes is a grand challenge of next-generation battery research. In this manuscript, we design molecularly-precise nanographene cathodes that are coupled with metallic Zn anodes to create a new class of Zn-ion batteries. Our results indicate that while electrodes with graphite or flat nanographenes do not support Zn-ion intercalation, the larger intermolecular spacing in a twisted peropyrene enables peropyrene electrodes to facilitate reversible Zn-ion intercalation in an acetonitrile electrolyte. While most previous Zn-ion batteries utilize aqueous electrolytes, the finding that nonaqueous Zn electrolytes can support intercalation in nanographenes is important for expanding the design space of nonaqueous multivalent batteries, which often possess higher voltages than their aqueous counterparts. Furthermore, because these nanographenes can be synthesized using a bottom-up approach via alkyne benzannulation, this work paves the way for future battery electrodes that contain other molecularly-precise nanographenes with tailored electrochemical properties. 
    more » « less
  4. Rechargeable batteries are crucial for energy storage across consumer electronics and automobile propulsion applications, facilitating the transition towards carbon neutrality and advancing clean energy technologies. Despite great success of Li-ion batteries (LIBs) in the commercial market, alternative technologies based on beyond-Li chemistry are highly demanded for large-scale and power-intensive applications necessitating enhanced energy density, lifetime, and safety, where fundamental understanding of the structure-property relationship of novel battery materials is critically needed. Transmission electron microscopy (TEM) is an indispensable method to characterize materials structures and compositions at the atomic scale, which is of particular importance for battery research to investigate crystal lattices, defects, as well as microstructural and chemical heterogeneities within materials used in electrodes, electrolytes, and their interfaces. Further, with rapid technical development, in-situ TEM has enabled real-time observations of various dynamical phenomena and chemical processes during battery cycling and phase transformations. Leveraging advanced in-situ TEM techniques, our collaborative endeavors with Dr. Marca Doeff have enabled us to conduct comparative analyses of Li and Na reactions within battery electrodes, offering unique insights into in early-stage beyond-Li chemistry. Herein, we present a systematic exploration of in-situ TEM studies for LIBs and beyond, focusing on electrode materials through intercalation, alloying, and conversion reaction mechanisms. By direct comparison between electrochemical reactions with Li and Na, we found substantial differences in reaction mechanisms, pathways, and kinetics between lithiation and sodiation processes, which are fundamentally related to various factors, such as ionic diffusion barrier, electrochemically induced stress, and geometric constraints. This concept has been demonstrated in multiple case studies that allows us to enhance the sodiation kinetics by tuning the overall reaction energetics through nanostructure optimization and interfacial engineering. We envision that the knowledge learned from in-situ TEM will provide valuable insights into understanding the alkali-ion electrochemistry and kinetics, thereby serving as foundational principles guiding the advancement of beyond Li-ion battery technologies. 
    more » « less
  5. Abstract Mechanical failure and its interference with electrochemistry are a roadblock in deploying high-capacity electrodes for Li-ion batteries. Computational prediction of the electrochemomechanical behavior of high-capacity composite electrodes is a significant challenge because of (i) complex interplay between mechanics and electrochemistry in the form of stress-regulated Li transport and interfacial charge transfer, (ii) thermodynamic solution non-ideality, (iii) nonlinear deformation kinematics and material inelasticity, and (iv) evolving material properties over the state of charge. We develop a computational framework that integrates the electrochemical response of batteries modulated by large deformation, mechanical stresses, and dynamic material properties. We use silicon as a model system and construct a microstructurally resolved porous composite electrode model. The model concerns the effect of large deformation of silicon on charge conduction and electrochemical response of the composite electrode, impact of mechanical stress on Li transport and interfacial charge transfer, and asymmetric charging/discharging kinetics. The study captures the rate-dependent, coupled electrochemomechanical behavior of high-capacity composite electrodes that agrees well with experimental results. 
    more » « less