Abstract In this paper, we study the largest eigenvalues of sample covariance matrices with elliptically distributed data. We consider the sample covariance matrix $$Q=YY^{*},$$ where the data matrix $$Y \in \mathbb{R}^{p \times n}$$ contains i.i.d. $$p$$-dimensional observations $$\textbf{y}_{i}=\xi _{i}T\textbf{u}_{i},\;i=1,\dots ,n.$$ Here $$\textbf{u}_{i}$$ is distributed on the unit sphere, $$\xi _{i} \sim \xi $$ is some random variable that is independent of $$\textbf{u}_{i}$$ and $$T^{*}T=\varSigma $$ is some deterministic positive definite matrix. Under some mild regularity assumptions on $$\varSigma ,$$ assuming $$\xi ^{2}$$ has bounded support and certain decay behaviour near its edge so that the limiting spectral distribution of $$Q$$ has a square root decay behaviour near the spectral edge, we prove that the Tracy–Widom law holds for the largest eigenvalues of $$Q$$ when $$p$$ and $$n$$ are comparably large. Based on our results, we further construct some useful statistics to detect the signals when they are corrupted by high dimensional elliptically distributed noise.
more »
« less
Block perturbation of symplectic matrices in Williamson’s theorem
Williamson's theorem states that for any 2n×2n real positive definite matrix A, there exists a 2n×2n real symplectic matrix S such that STAS=D⊕D, where D is an n×n diagonal matrix with positive diagonal entries which are known as the symplectic eigenvalues of A. Let H be any 2n×2n real symmetric matrix such that the perturbed matrix A+H is also positive definite. In this paper, we show that any symplectic matrix S̃ diagonalizing A+H in Williamson's theorem is of the form S̃ =SQ+(‖H‖), where Q is a 2n×2n real symplectic as well as orthogonal matrix. Moreover, Q is in symplectic block diagonal form with the block sizes given by twice the multiplicities of the symplectic eigenvalues of A. Consequently, we show that S̃ and S can be chosen so that ‖S̃ −S‖=(‖H‖). Our results hold even if A has repeated symplectic eigenvalues. This generalizes the stability result of symplectic matrices for non-repeated symplectic eigenvalues given by Idel, Gaona, and Wolf [Linear Algebra Appl., 525:45-58, 2017].
more »
« less
- Award ID(s):
- 2304816
- PAR ID:
- 10534593
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Canadian Mathematical Bulletin
- ISSN:
- 0008-4395
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work, we first show a simple approach to constructing non-Hermitian Hamiltonians with a real spectrum, which are not obtained by a non-unitary transformation such as the imaginary gauge transformation. They are given, instead, by the product of a Hermitian Hamiltonian H0 and a positive semi-definite matrix A. Depending on whether A has zero eigenvalue(s), the resulting H can possess an exceptional point at zero energy. When A is only required to be Hermitian instead, the resulting H is pseudo-Hermitian that can have real and complex conjugate energy levels. In the special case where A is diagonal, we compare our approach to an imaginary gauge transformation, which reveals a selective non-Hermitian skin effect in our approach, i.e., only the zero mode is a skin mode and the non-zero modes reside in the bulk. We further show that this selective non-Hermitian skin mode has a much lower lasing threshold than its counterpart in the standard non-Hermitian skin effect with the same spatial profile, when we pump at the boundary where they are localized. The form of our construction can also be found, for example, in dynamical matrices describing coupled frictionless harmonic oscillators with different masses.more » « less
-
We develop a general framework for finding approximately-optimal preconditioners for solving linear systems. Leveraging this framework we obtain improved runtimes for fundamental preconditioning and linear system solving problems including the following. \begin{itemize} \item \textbf{Diagonal preconditioning.} We give an algorithm which, given positive definite $$\mathbf{K} \in \mathbb{R}^{d \times d}$$ with $$\mathrm{nnz}(\mathbf{K})$$ nonzero entries, computes an $$\epsilon$$-optimal diagonal preconditioner in time $$\widetilde{O}(\mathrm{nnz}(\mathbf{K}) \cdot \mathrm{poly}(\kappa^\star,\epsilon^{-1}))$$, where $$\kappa^\star$$ is the optimal condition number of the rescaled matrix. \item \textbf{Structured linear systems.} We give an algorithm which, given $$\mathbf{M} \in \mathbb{R}^{d \times d}$$ that is either the pseudoinverse of a graph Laplacian matrix or a constant spectral approximation of one, solves linear systems in $$\mathbf{M}$$ in $$\widetilde{O}(d^2)$$ time. \end{itemize} Our diagonal preconditioning results improve state-of-the-art runtimes of $$\Omega(d^{3.5})$$ attained by general-purpose semidefinite programming, and our solvers improve state-of-the-art runtimes of $$\Omega(d^{\omega})$$ where $$\omega > 2.3$$ is the current matrix multiplication constant. We attain our results via new algorithms for a class of semidefinite programs (SDPs) we call \emph{matrix-dictionary approximation SDPs}, which we leverage to solve an associated problem we call \emph{matrix-dictionary recovery}.more » « less
-
The classic graphical Cheeger inequalities state that if $$M$$ is an $$n\times n$$ \emph{symmetric} doubly stochastic matrix, then \[ \frac{1-\lambda_{2}(M)}{2}\leq\phi(M)\leq\sqrt{2\cdot(1-\lambda_{2}(M))} \] where $$\phi(M)=\min_{S\subseteq[n],|S|\leq n/2}\left(\frac{1}{|S|}\sum_{i\in S,j\not\in S}M_{i,j}\right)$$ is the edge expansion of $$M$$, and $$\lambda_{2}(M)$$ is the second largest eigenvalue of $$M$$. We study the relationship between $$\phi(A)$$ and the spectral gap $$1-\re\lambda_{2}(A)$$ for \emph{any} doubly stochastic matrix $$A$$ (not necessarily symmetric), where $$\lambda_{2}(A)$$ is a nontrivial eigenvalue of $$A$$ with maximum real part. Fiedler showed that the upper bound on $$\phi(A)$$ is unaffected, i.e., $$\phi(A)\leq\sqrt{2\cdot(1-\re\lambda_{2}(A))}$$. With regards to the lower bound on $$\phi(A)$$, there are known constructions with \[ \phi(A)\in\Theta\left(\frac{1-\re\lambda_{2}(A)}{\log n}\right), \] indicating that at least a mild dependence on $$n$$ is necessary to lower bound $$\phi(A)$$. In our first result, we provide an \emph{exponentially} better construction of $$n\times n$$ doubly stochastic matrices $$A_{n}$$, for which \[ \phi(A_{n})\leq\frac{1-\re\lambda_{2}(A_{n})}{\sqrt{n}}. \] In fact, \emph{all} nontrivial eigenvalues of our matrices are $$0$$, even though the matrices are highly \emph{nonexpanding}. We further show that this bound is in the correct range (up to the exponent of $$n$$), by showing that for any doubly stochastic matrix $$A$$, \[ \phi(A)\geq\frac{1-\re\lambda_{2}(A)}{35\cdot n}. \] As a consequence, unlike the symmetric case, there is a (necessary) loss of a factor of $$n^{\alpha}$ for $$\frac{1}{2}\leq\alpha\leq1$$ in lower bounding $$\phi$$ by the spectral gap in the nonsymmetric setting. Our second result extends these bounds to general matrices $$R$$ with nonnegative entries, to obtain a two-sided \emph{gapped} refinement of the Perron-Frobenius theorem. Recall from the Perron-Frobenius theorem that for such $$R$$, there is a nonnegative eigenvalue $$r$$ such that all eigenvalues of $$R$$ lie within the closed disk of radius $$r$$ about $$0$$. Further, if $$R$$ is irreducible, which means $$\phi(R)>0$$ (for suitably defined $$\phi$$), then $$r$$ is positive and all other eigenvalues lie within the \textit{open} disk, so (with eigenvalues sorted by real part), $$\re\lambda_{2}(R)more » « less
-
QR factorization is a key tool in mathematics, computer science, operations research, and engineering. This paper presents the roundoff-error-free (REF) QR factorization framework comprising integer-preserving versions of the standard and the thin QR factorizations and associated algorithms to compute them. Specifically, the standard REF QR factorization factors a given matrix $$A \in \Z^{m \times n}$$ as $A=QDR$, where $$Q \in \Z^{m \times m}$$ has pairwise orthogonal columns, $$D$$ is a diagonal matrix, and $$R \in \Z^{m \times n}$$ is an upper trapezoidal matrix; notably, the entries of $$Q$$ and $$R$$ are integral, while the entries of $$D$$ are reciprocals of integers. In the thin REF QR factorization, $$Q \in \Z^{m \times n}$$ also has pairwise orthogonal columns, and $$R \in \Z^{n \times n}$$ is also an upper triangular matrix. In contrast to traditional (i.e., floating-point) QR factorizations, every operation used to compute these factors is integral; thus, REF QR is guaranteed to be an exact orthogonal decomposition. Importantly, the bit-length of every entry in the REF QR factorizations (and within the algorithms to compute them) is bounded polynomially. Notable applications of our REF QR factorizations include finding exact least squares or exact basic solutions (i.e., a rational n-dimensional vector $$x$$) to any given full column rank or rank deficient linear system $A x = b$, respectively. In addition, our exact factorizations can be used as a subroutine within exact and/or high-precision quadratic programming. Altogether, REF QR provides a framework to obtain exact orthogonal factorizations of any rational matrix (as any rational/decimal matrix can be easily transformed into an integral matrix).more » « less
An official website of the United States government

