skip to main content


Title: A 283 pJ/b 240 Mb/s Floating-Point Baseband Accelerator for Massive MU-MIMO in 22FDX
We present PULPO, a floating-point baseband-processing accelerator for massive multi-user multiple-input multiple-output (MU-MIMO) basestations (BSs). PULPO accelerates matrix-vector products, not only with a matrix but also with its Hermitian, as well as affine transforms and nonlinear projections used in iterative algorithms that outclass traditional linear methods in various applications. PULPO is integrated in a system-on-chip (SoC) with a tight integration to the system's data memory, facilitating data exchange and co-operation with 8 RISC-V cores. The fabricated accelerator achieves comparable efficiency as recently-proposed fixed-point baseband processors, while eliminating the burdens associated with fixed-point design, thus simplifying massive MU-MIMO BS development.  more » « less
Award ID(s):
1717559
NSF-PAR ID:
10434364
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE 48th European Solid State Circuits Conference (ESSCIRC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Massive multi-user (MU) multiple-input multiple-output (MIMO) provides high spectral efficiency by means of spatial multiplexing and fine-grained beamforming. However, conventional base-station (BS) architectures for systems with hundreds of antennas that rely on centralized baseband processing inevitably suffer from (i) excessive interconnect data rates between radio-frequency circuitry and processing fabrics, and (ii) prohibitive complexity at the centralized baseband processor. Recently, decentralized baseband processing (DBP) architectures and algorithms have been proposed, which mitigate the interconnect bandwidth and complexity bottlenecks. This paper systematically explores the design trade-offs between error-rate performance, computational complexity, and data transfer latency of DBP architectures under different system configurations and channel conditions. Considering architecture, algorithm, and numerical precision aspects, we provide practical guidelines to select the DBP architecture and algorithm that are able to realize the full benefits of massive MU-MIMO in the uplink and downlink. 
    more » « less
  2. All-digital basestation (BS) architectures for millimeter-wave (mmWave) massive multi-user multiple-input multiple-output (MU-MIMO), which equip each radio-frequency chain with dedicated data converters, have advantages in spectral efficiency, flexibility, and baseband-processing simplicity over hybrid analog-digital solutions. For all-digital architectures to be competitive with hybrid solutions in terms of power consumption, novel signal-processing methods and baseband architectures are necessary. In this paper, we demonstrate that adapting the resolution of the analog-to-digital converters (ADCs) and spatial equalizer of an all-digital system to the communication scenario (e.g., the number of users, modulation scheme, and propagation conditions) enables orders-of-magnitude power savings for realistic mmWave channels. For example, for a 256-BS-antenna 16-user system supporting 1 GHz bandwidth, a traditional baseline architecture designed for a 64-user worst-case scenario would consume 23 W in 28 nm CMOS for the ADC array and the spatial equalizer, whereas a resolution-adaptive architecture is able to reduce the power consumption by 6.7×. 
    more » « less
  3. All-digital millimeter-wave (mmWave) massive multi-user multiple-input multiple-output (MU-MIMO) receivers enable extreme data rates but require high power consumption. In order to reduce power consumption, this paper presents the first resolution-adaptive all-digital receiver ASIC that is able to adjust the resolution of the data-converters and baseband-processing engine to the instantaneous communication scenario. The scalable 32-antenna, 65 nm CMOS receiver occupies a total area of 8 mm 2 and integrates analog-to-digital converters (ADCs) with programmable gain and resolution, beamspace channel estimation, and a resolution-adaptive processing-in-memory spatial equalizer. With 6-bit ADC samples and a 4-bit spatial equalizer, our ASIC achieves a throughput of 9.98 Gb/s while being at least 2× more energy-efficient than state-of-the-art designs. 
    more » « less
  4. Linear minimum mean-square error (L-MMSE) equalization is among the most popular methods for data detection in massive multi-user multiple-input multiple-output (MU-MIMO) wireless systems. While L-MMSE equalization enables near-optimal spectral efficiency, accurate knowledge of the signal and noise powers is necessary. Furthermore, corresponding VLSI designs must solve linear systems of equations, which requires high arithmetic precision, exhibits stringent data dependencies, and results in high circuit complexity. This paper proposes the first VLSI design of the NOnParametric Equalizer (NOPE), which avoids knowledge of the transmit signal and noise powers, provably delivers the performance of L-MMSE equalization for massive MU-MIMO systems, and is resilient to numerous system and hardware impairments due to its parameter-free nature. Moreover, NOPE avoids computation of a matrix inverse and only requires hardware-friendly matrix-vector multiplications. To showcase the practical advantages of NOPE, we propose a parallel VLSI architecture and provide synthesis results in 28nm CMOS. We demonstrate that NOPE performs on par with existing data detectors for massive MU-MIMO that require accurate knowledge of the signal and noise powers. 
    more » « less
  5. Massive multiuser (MU) multiple-input multiple-output (MIMO) promises significant improvements in spectral efficiency compared to small-scale MIMO. Typical massive MU-MIMO base-station (BS) designs rely on centralized linear data detectors and precoders which entail excessively high complexity, interconnect data rates, and chip input/output (I/O) bandwidth when executed on a single computing fabric. To resolve these complexity and bandwidth bottlenecks, we propose new decentralized algorithms for data detection and precoding that use coordinate descent. Our methods parallelize computations across multiple computing fabrics, while minimizing interconnect and I/O bandwidth. The proposed decentralized algorithms achieve near-optimal error-rate performance and multi-Gbps throughput at sub-1 ms latency when implemented on a multi-GPU cluster with half-precision floating-point arithmetic. 
    more » « less