skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Geometry of Stable Steiner Tree Instances
In this work we consider the Steiner tree problem under Bilu-Linial stability. We give strong geometric struc- tural properties that need to be satisfied by stable in- stances. We then make use of, and strengthen, these geometric properties to show that 1.59-stable instances of Euclidean Steiner trees are polynomial-time solvable by showing it reduces to the minimum spanning tree problem. We also provide a connection between certain approximation algorithms and Bilu-Linial stability for Steiner trees.  more » « less
Award ID(s):
1945251
PAR ID:
10434388
Author(s) / Creator(s):
; ; ;
Editor(s):
Bahoo, Yeganeh; Georgiou, Konstantinos
Date Published:
Journal Name:
The Canadian Conference on Computational Geometry
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In the classical Steiner tree problem, given an undirected, connected graph G =( V , E ) with non-negative edge costs and a set of terminals T ⊆ V , the objective is to find a minimum-cost tree E &prime ⊆ E that spans the terminals. The problem is APX-hard; the best-known approximation algorithm has a ratio of ρ = ln (4)+ε < 1.39. In this article, we study a natural generalization, the multi-level Steiner tree (MLST) problem: Given a nested sequence of terminals T ℓ ⊂ … ⊂ T 1 ⊆ V , compute nested trees E ℓ ⊆ … ⊆ E 1 ⊆ E that span the corresponding terminal sets with minimum total cost. The MLST problem and variants thereof have been studied under various names, including Multi-level Network Design, Quality-of-Service Multicast tree, Grade-of-Service Steiner tree, and Multi-tier tree. Several approximation results are known. We first present two simple O (ℓ)-approximation heuristics. Based on these, we introduce a rudimentary composite algorithm that generalizes the above heuristics, and determine its approximation ratio by solving a linear program. We then present a method that guarantees the same approximation ratio using at most 2ℓ Steiner tree computations. We compare these heuristics experimentally on various instances of up to 500 vertices using three different network generation models. We also present several integer linear programming formulations for the MLST problem and compare their running times on these instances. To our knowledge, the composite algorithm achieves the best approximation ratio for up to ℓ = 100 levels, which is sufficient for most applications, such as network visualization or designing multi-level infrastructure. 
    more » « less
  2. In the classical Steiner tree problem, given an undirected, connected graph G=(V,E) with non-negative edge costs and a set of terminals T⊆V, the objective is to find a minimum-cost tree E′⊆E that spans the terminals. The problem is APX-hard; the best known approximation algorithm has a ratio of ρ=ln(4)+ε<1.39. In this paper, we study a natural generalization, the multi-level Steiner tree (MLST) problem: given a nested sequence of terminals Tℓ⊂⋯⊂T1⊆V, compute nested trees Eℓ⊆⋯⊆E1⊆E that span the corresponding terminal sets with minimum total cost. The MLST problem and variants thereof have been studied under various names including Multi-level Network Design, Quality-of-Service Multicast tree, Grade-of-Service Steiner tree, and Multi-Tier tree. Several approximation results are known. We first present two simple O(ℓ)-approximation heuristics. Based on these, we introduce a rudimentary composite algorithm that generalizes the above heuristics, and determine its approximation ratio by solving a linear program. We then present a method that guarantees the same approximation ratio using at most 2ℓ Steiner tree computations. We compare these heuristics experimentally on various instances of up to 500 vertices using three different network generation models. We also present various integer linear programming (ILP) formulations for the MLST problem, and compare their running times on these instances. To our knowledge, the composite algorithm achieves the best approximation ratio for up to ℓ=100 levels, which is sufficient for most applications such as network visualization or designing multi-level infrastructure. 
    more » « less
  3. null (Ed.)
    Network design problems aim to compute low-cost structures such as routes, trees and subgraphs. Often, it is natural and desirable to require that these structures have small hop length or hop diameter. Unfortunately, optimization problems with hop constraints are much harder and less well understood than their hop-unconstrained counterparts. A significant algorithmic barrier in this setting is the fact that hop-constrained distances in graphs are very far from being a metric. We show that, nonetheless, hop-constrained distances can be approximated by distributions over ``partial tree metrics.'' We build this result into a powerful and versatile algorithmic tool which, similarly to classic probabilistic tree embeddings, reduces hop-constrained problems in general graphs to hop-unconstrained problems on trees. We then use this tool to give the first poly-logarithmic bicriteria approximations for the hop-constrained variants of many classic network design problems. These include Steiner forest, group Steiner tree, group Steiner forest, buy-at-bulk network design as well as online and oblivious versions of many of these problems. 
    more » « less
  4. null (Ed.)
    Directed Steiner Tree (DST) is a central problem in combinatorial optimization and theoretical computer science: Given a directed graph G = (V, E) with edge costs c ∈ ℝ_{≥ 0}^E, a root r ∈ V and k terminals K ⊆ V, we need to output a minimum-cost arborescence in G that contains an rrightarrow t path for every t ∈ K. Recently, Grandoni, Laekhanukit and Li, and independently Ghuge and Nagarajan, gave quasi-polynomial time O(log²k/log log k)-approximation algorithms for the problem, which are tight under popular complexity assumptions. In this paper, we consider the more general Degree-Bounded Directed Steiner Tree (DB-DST) problem, where we are additionally given a degree bound d_v on each vertex v ∈ V, and we require that every vertex v in the output tree has at most d_v children. We give a quasi-polynomial time (O(log n log k), O(log² n))-bicriteria approximation: The algorithm produces a solution with cost at most O(log nlog k) times the cost of the optimum solution that violates the degree constraints by at most a factor of O(log²n). This is the first non-trivial result for the problem. While our cost-guarantee is nearly optimal, the degree violation factor of O(log²n) is an O(log n)-factor away from the approximation lower bound of Ω(log n) from the Set Cover hardness. The hardness result holds even on the special case of the Degree-Bounded Group Steiner Tree problem on trees (DB-GST-T). With the hope of closing the gap, we study the question of whether the degree violation factor can be made tight for this special case. We answer the question in the affirmative by giving an (O(log nlog k), O(log n))-bicriteria approximation algorithm for DB-GST-T. 
    more » « less
  5. A sparsification of a given graph G is a sparser graph (typically a subgraph) which aims to approximate or preserve some property of G. Examples of sparsifications include but are not limited to spanning trees, Steiner trees, spanners, emulators, and distance preservers. Each vertex has the same priority in all of these problems. However, real-world graphs typically assign different “priorities” or “levels” to different vertices, in which higher-priority vertices require higher-quality connectivity between them. Multi-priority variants of the Steiner tree problem have been studied in prior literature but this generalization is much less studied for other sparsification problems. In this paper, we define a generalized multi-priority problem and present a rounding-up approach that can be used for a variety of graph sparsifications. Our analysis provides a systematic way to compute approximate solutions to multi-priority variants of a wide range of graph sparsification problems given access to a single-priority subroutine. 
    more » « less