skip to main content


This content will become publicly available on April 30, 2024

Title: On the Relationship between Explanation and Recommendation: Learning to Rank Explanations for Improved Performance
Explaining to users why some items are recommended is critical, as it can help users to make better decisions, increase their satisfaction, and gain their trust in recommender systems (RS). However, existing explainable RS usually consider explanation as a side output of the recommendation model, which has two problems: (1) It is difficult to evaluate the produced explanations, because they are usually model-dependent, and (2) as a result, how the explanations impact the recommendation performance is less investigated. In this article, explaining recommendations is formulated as a ranking task and learned from data, similarly to item ranking for recommendation. This makes it possible for standard evaluation of explanations via ranking metrics (e.g., Normalized Discounted Cumulative Gain). Furthermore, this article extends traditional item ranking to an item–explanation joint-ranking formalization to study if purposely selecting explanations could reach certain learning goals, e.g., improving recommendation performance. A great challenge, however, is that the sparsity issue in the user-item-explanation data would be inevitably severer than that in traditional user–item interaction data, since not every user–item pair can be associated with all explanations. To mitigate this issue, this article proposes to perform two sets of matrix factorization by considering the ternary relationship as two groups of binary relationships. Experiments on three large datasets verify the solution’s effectiveness on both explanation ranking and item recommendation.  more » « less
Award ID(s):
2046457 2007907 1910154
NSF-PAR ID:
10434464
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Intelligent Systems and Technology
Volume:
14
Issue:
2
ISSN:
2157-6904
Page Range / eLocation ID:
1 to 24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transparency and accountability have become major concerns for black-box machine learning (ML) models. Proper explanations for the model behavior increase model transparency and help researchers develop more accountable models. Graph neural networks (GNN) have recently shown superior performance in many graph ML problems than traditional methods, and explaining them has attracted increased interest. However, GNN explanation for link prediction (LP) is lacking in the literature. LP is an essential GNN task and corresponds to web applications like recommendation and sponsored search on web. Given existing GNN explanation methods only address node/graph-level tasks, we propose Path-based GNN Explanation for heterogeneous Link prediction (PaGE-Link) that generates explanations with connection interpretability, enjoys model scalability, and handles graph heterogeneity. Qualitatively, PaGE-Link can generate explanations as paths connecting a node pair, which naturally captures connections between the two nodes and easily transfer to human-interpretable explanations. Quantitatively, explanations generated by PaGE-Link improve AUC for recommendation on citation and user-item graphs by 9 - 35% and are chosen as better by 78.79% of responses in human evaluation. 
    more » « less
  2. As recommendation is essentially a comparative (or ranking) process, a good explanation should illustrate to users why an item is believed to be better than another, i.e., comparative explanations about the recommended items. Ideally, after reading the explanations, a user should reach the same ranking of items as the system’s. Unfortunately, little research attention has yet been paid on such comparative explanations. In this work, we develop an extract-and-refine architecture to explain the relative comparisons among a set of ranked items from a recommender system. For each recommended item, we first extract one sentence from its associated reviews that best suits the desired comparison against a set of reference items. Then this extracted sentence is further articulated with respect to the target user through a generative model to better explain why the item is recommended. We design a new explanation quality metric based on BLEU to guide the end-to-end training of the extraction and refinement components, which avoids generation of generic content. Extensive offline evaluations on two large recommendation benchmark datasets and serious user studies against an array of state-of-the-art explainable recommendation algorithms demonstrate the necessity of comparative explanations and the effectiveness of our solution. 
    more » « less
  3. Providing user-understandable explanations to justify recommendations could help users better understand the recommended items, increase the system’s ease of use, and gain users’ trust. A typical approach to realize it is natural language generation. However, previous works mostly adopt recurrent neural networks to meet the ends, leaving the potentially more effective pre-trained Transformer models under-explored. In fact, user and item IDs, as important identifiers in recommender systems, are inherently in different semantic space as words that pre-trained models were already trained on. Thus, how to effectively fuse IDs into such models becomes a critical issue. Inspired by recent advancement in prompt learning, we come up with two solutions: find alternative words to represent IDs (called discrete prompt learning) and directly input ID vectors to a pre-trained model (termed continuous prompt learning). In the latter case, ID vectors are randomly initialized but the model is trained in advance on large corpora, so they are actually in different learning stages. To bridge the gap, we further propose two training strategies: sequential tuning and recommendation as regularization. Extensive experiments show that our continuous prompt learning approach equipped with the training strategies consistently outperforms strong baselines on three datasets of explainable recommendation. 
    more » « less
  4. Social recommendation has achieved great success in many domains including e-commerce and location-based social networks. Existing methods usually explore the user-item interactions or user-user connections to predict users’ preference behaviors. However, they usually learn both user and item representations in Euclidean space, which has large limitations for exploring the latent hierarchical property in the data. In this article, we study a novel problem of hyperbolic social recommendation, where we aim to learn the compact but strong representations for both users and items. Meanwhile, this work also addresses two critical domain-issues, which are under-explored. First, users often make trade-offs with multiple underlying aspect factors to make decisions during their interactions with items. Second, users generally build connections with others in terms of different aspects, which produces different influences with aspects in social network. To this end, we propose a novel graph neural network (GNN) framework with multiple aspect learning, namely, HyperSoRec. Specifically, we first embed all users, items, and aspects into hyperbolic space with superior representations to ensure their hierarchical properties. Then, we adapt a GNN with novel multi-aspect message-passing-receiving mechanism to capture different influences among users. Next, to characterize the multi-aspect interactions of users on items, we propose an adaptive hyperbolic metric learning method by introducing learnable interactive relations among different aspects. Finally, we utilize the hyperbolic translational distance to measure the plausibility in each user-item pair for recommendation. Experimental results on two public datasets clearly demonstrate that our HyperSoRec not only achieves significant improvement for recommendation performance but also shows better representation ability in hyperbolic space with strong robustness and reliability. 
    more » « less
  5. In this paper, we consider the Collaborative Ranking (CR) problem for recommendation systems. Given a set of pairwise preferences between items for each user, collaborative ranking can be used to rank un-rated items for each user, and this ranking can be naturally used for recommendation. It is observed that collaborative ranking algorithms usually achieve better performance since they directly minimize the ranking loss; however, they are rarely used in practice due to the poor scalability. All the existing CR algorithms have time complexity at least O(|Ω|r) per iteration, where r is the target rank and |Ω| is number of pairs which grows quadratically with number of ratings per user. For example, the Netflix data contains totally 20 billion rating pairs, and at this scale all the current algorithms have to work with significant subsampling, resulting in poor prediction on testing data. In this paper, we propose a new collaborative ranking algorithm called Primal-CR that reduces the time complexity toO(|Ω|+d1d2r), where d1 is number of users and d2 is the averaged number of items rated by a user. Note that d1, d2 is strictly smaller and open much smaller than |Ω|. Furthermore, by exploiting the fact that most data is in the form of numerical ratings instead of pairwise comparisons, we propose Primal-CR++ with O(d1d2(r + log d2)) time complexity. Both algorithms have better theoretical time complexity than existing approaches and also outperform existing approaches in terms of NDCG and pairwise error on real data sets. To the best of our knowledge, this is the first collaborative ranking algorithm capable of working on the full Netflix dataset using all the 20 billion rating pairs, and this leads to a model with much better recommendation compared with previous models trained on subsamples. Finally, compared with classical matrix factorization algorithm which also requires O(d1 d2r) time, our algorithm has almost the same efficiency while making much better recommendations since we consider the ranking loss. 
    more » « less