As recommendation is essentially a comparative (or ranking) process, a good explanation should illustrate to users why an item is believed to be better than another, i.e., comparative explanations about the recommended items. Ideally, after reading the explanations, a user should reach the same ranking of items as the system’s. Unfortunately, little research attention has yet been paid on such comparative explanations. In this work, we develop an extract-and-refine architecture to explain the relative comparisons among a set of ranked items from a recommender system. For each recommended item, we first extract one sentence from its associated reviews that best suits the desired comparison against a set of reference items. Then this extracted sentence is further articulated with respect to the target user through a generative model to better explain why the item is recommended. We design a new explanation quality metric based on BLEU to guide the end-to-end training of the extraction and refinement components, which avoids generation of generic content. Extensive offline evaluations on two large recommendation benchmark datasets and serious user studies against an array of state-of-the-art explainable recommendation algorithms demonstrate the necessity of comparative explanations and the effectiveness of our solution.
more »
« less
Explanation as a Defense of Recommendation
Textual explanations have proved to help improve user satisfaction on machine-made recommendations. However, current mainstream solutions loosely connect the learning of explanation with the learning of recommendation: for example, they are often separately modeled as rating prediction and content generation tasks. In this work, we propose to strengthen their connection by enforcing the idea of sentiment alignment between a recommendation and its corresponding explanation. At training time, the two learning tasks are joined by a latent sentiment vector, which is encoded by the recommendation module and used to make word choices for explanation generation. At both training and inference time, the explanation module is required to generate explanation text that matches sentiment predicted by the recommendation module. Extensive experiments demonstrate our solution outperforms a rich set of baselines in both recommendation and explanation tasks, especially on the improved quality of its generated explanations. More importantly, our user studies confirm our generated explanations help users better recognize the differences between recommended items and understand why an item is recommended.
more »
« less
- PAR ID:
- 10277563
- Date Published:
- Journal Name:
- Proceedings of the 14th ACM International Conference on Web Search and Data Mining
- Page Range / eLocation ID:
- 1029 to 1037
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Explaining to users why some items are recommended is critical, as it can help users to make better decisions, increase their satisfaction, and gain their trust in recommender systems (RS). However, existing explainable RS usually consider explanation as a side output of the recommendation model, which has two problems: (1) It is difficult to evaluate the produced explanations, because they are usually model-dependent, and (2) as a result, how the explanations impact the recommendation performance is less investigated. In this article, explaining recommendations is formulated as a ranking task and learned from data, similarly to item ranking for recommendation. This makes it possible for standard evaluation of explanations via ranking metrics (e.g., Normalized Discounted Cumulative Gain). Furthermore, this article extends traditional item ranking to an item–explanation joint-ranking formalization to study if purposely selecting explanations could reach certain learning goals, e.g., improving recommendation performance. A great challenge, however, is that the sparsity issue in the user-item-explanation data would be inevitably severer than that in traditional user–item interaction data, since not every user–item pair can be associated with all explanations. To mitigate this issue, this article proposes to perform two sets of matrix factorization by considering the ternary relationship as two groups of binary relationships. Experiments on three large datasets verify the solution’s effectiveness on both explanation ranking and item recommendation.more » « less
-
Transparency and accountability have become major concerns for black-box machine learning (ML) models. Proper explanations for the model behavior increase model transparency and help researchers develop more accountable models. Graph neural networks (GNN) have recently shown superior performance in many graph ML problems than traditional methods, and explaining them has attracted increased interest. However, GNN explanation for link prediction (LP) is lacking in the literature. LP is an essential GNN task and corresponds to web applications like recommendation and sponsored search on web. Given existing GNN explanation methods only address node/graph-level tasks, we propose Path-based GNN Explanation for heterogeneous Link prediction (PaGE-Link) that generates explanations with connection interpretability, enjoys model scalability, and handles graph heterogeneity. Qualitatively, PaGE-Link can generate explanations as paths connecting a node pair, which naturally captures connections between the two nodes and easily transfer to human-interpretable explanations. Quantitatively, explanations generated by PaGE-Link improve AUC for recommendation on citation and user-item graphs by 9 - 35% and are chosen as better by 78.79% of responses in human evaluation.more » « less
-
Explaining automatically generated recommendations allows users to make more informed and accurate decisions about which results to utilize, and therefore improves their satisfaction. In this work, we develop a multi-task learning solution for explainable recommendation. Two companion learning tasks of user preference modeling for recommendation and opinionated content modeling for explanation are integrated via a joint tensor factorization. As a result, the algorithm predicts not only a user's preference over a list of items, i.e., recommendation, but also how the user would appreciate a particular item at the feature level, i.e., opinionated textual explanation. Extensive experiments on two large collections of Amazon and Yelp reviews confirmed the effectiveness of our solution in both recommendation and explanation tasks, compared with several existing recommendation algorithms. And our extensive user study clearly demonstrates the practical value of the explainable recommendations generated by our algorithm.more » « less
-
Providing user-understandable explanations to justify recommendations could help users better understand the recommended items, increase the system’s ease of use, and gain users’ trust. A typical approach to realize it is natural language generation. However, previous works mostly adopt recurrent neural networks to meet the ends, leaving the potentially more effective pre-trained Transformer models under-explored. In fact, user and item IDs, as important identifiers in recommender systems, are inherently in different semantic space as words that pre-trained models were already trained on. Thus, how to effectively fuse IDs into such models becomes a critical issue. Inspired by recent advancement in prompt learning, we come up with two solutions: find alternative words to represent IDs (called discrete prompt learning) and directly input ID vectors to a pre-trained model (termed continuous prompt learning). In the latter case, ID vectors are randomly initialized but the model is trained in advance on large corpora, so they are actually in different learning stages. To bridge the gap, we further propose two training strategies: sequential tuning and recommendation as regularization. Extensive experiments show that our continuous prompt learning approach equipped with the training strategies consistently outperforms strong baselines on three datasets of explainable recommendation.more » « less