skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Machine Learning–Assisted Design of Material Properties
Designing functional materials requires a deep search through multidimensional spaces for system parameters that yield desirable material properties. For cases where conventional parameter sweeps or trial-and-error sampling are impractical, inverse methods that frame design as a constrained optimization problem present an attractive alternative. However, even efficient algorithms require time- and resource-intensive characterization of material properties many times during optimization, imposing a design bottleneck. Approaches that incorporate machine learning can help address this limitation and accelerate the discovery of materials with targeted properties. In this article, we review how to leverage machine learning to reduce dimensionality in order to effectively explore design space, accelerate property evaluation, and generate unconventional material structures with optimal properties. We also discuss promising future directions, including integration of machine learning into multiple stages of a design algorithm and interpretation of machine learning models to understand how design parameters relate to material properties.  more » « less
Award ID(s):
1720595
PAR ID:
10434640
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Annual Review of Chemical and Biomolecular Engineering
Volume:
13
Issue:
1
ISSN:
1947-5438
Page Range / eLocation ID:
235 to 254
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The discovery of functional dye materials with superior optical properties is crucial for advancing technologies in biomedical imaging, organic photovoltaics, and quantum information systems. Recent advancements highlight the need to accelerate this discovery process by integrating computational strategies with experimental methods. In this regard, we have employed a computational approach to explore the latent space of dye materials, utilizing swarm optimization techniques to efficiently navigate complex chemical spaces and identify optimal values of molecular properties using machine learning methods based on target properties, such as high extinction coefficients ($$\varepsilon$$). The latent space based evaluation outperformed all available features of a domain. This approach enhances inverse material design by systematically correlating molecular parameters with desired optical characteristics by implementing VAEs. In this process, by defining target properties as inputs, the model effectively determines the key molecular features necessary for engineering high-performance dye compounds. 
    more » « less
  2. Metal additive manufacturing (AM) holds immense potential for developing advanced structural alloys. However, the complex, heterogeneous nature of AM-produced materials presents significant challenges to traditional material characterization and optimization methods. This review explores the integration of artificial intelligence (AI) and machine learning (ML) with high-throughput material characterization protocols to rapidly establish the process–structure–property (PSP) relationships critically needed to dramatically accelerate the development of metal AM processes. Combinatorial high-throughput evaluations, including rapid material synthesis and nonstandard high-throughput testing protocols, such as spherical indentation and small punch tests, are discussed for their capability to rapidly assess mechanical properties and establish PSP linkages. Furthermore, the review examines the role of AI and ML in optimizing AM processes, particularly through Bayesian optimization, which offers new avenues for efficient exploration of high-dimensional design spaces. The review envisions a future where AI- and ML-driven, autonomous AM development cycles significantly enhance material and process optimization. 
    more » « less
  3. High-entropy alloys (HEAs) have attracted considerable attention due to their exceptional properties and outstanding performance across various applications. However, the vast compositional space and complex high-dimensional atomic interactions pose significant challenges in uncovering fundamental physical principles and effectively guiding alloy design. Traditional experimental approaches, often reliant on trial-and-error methods, are time-consuming, cost-prohibitive, and inefficient. To accelerate progress in this field, advanced simulation techniques and data-driven methodologies, particularly machine learning (ML) with a particular interest in nanoscale phenomena, have emerged as transformative tools for composition design, property prediction, and performance optimization. By leveraging extensive materials databases and sophisticated learning algorithms, ML facilitates the discovery of intricate patterns that conventional methods may overlook, and enables the design of HEAs with targeted properties. This review paper provides a comprehensive overview of recent advancements in ML applications for HEAs. It begins with a brief introduction of the fundamental principles of HEAs and ML methodologies, including key algorithms, databases, and evaluation metrics. The critical role of materials representation and feature engineering in ML-driven HEA design is thoroughly discussed. Furthermore, state-of-the-art developments in the integration of ML with HEA research, particularly in composition optimization, property prediction, and phase identification, are systematically reviewed. Special emphasis is placed on cutting-edge deep learning techniques, such as generative models and computer vision, which are revolutionizing the f ield. This study explores the application of machine learning (ML) in developing highly accurate ML interatomic potentials (MLIPs) for molecular dynamics (MD) simulations. These MLIPs have the potential to enhance the accuracy and efficiency of simulations, enabling a more precise representation of the fundamental physics governing high-entropy alloys (HEAs) at the atomic level. A critical discussion is provided, addressing both the potential advantages and the inherent limitations of this approach. This review aims to provide insights into the future directions of ML-driven HEA research, offering a roadmap for advancing material design through data-driven innovation. 
    more » « less
  4. Prediction of crystal structures with desirable material properties is a grand challenge in materials research. We deployed graph theory assisted structure searcher and combined with universal machine learning potentials to accelerate the process. 
    more » « less
  5. null (Ed.)
    Abstract The Joint Automated Repository for Various Integrated Simulations (JARVIS) is an integrated infrastructure to accelerate materials discovery and design using density functional theory (DFT), classical force-fields (FF), and machine learning (ML) techniques. JARVIS is motivated by the Materials Genome Initiative (MGI) principles of developing open-access databases and tools to reduce the cost and development time of materials discovery, optimization, and deployment. The major features of JARVIS are: JARVIS-DFT, JARVIS-FF, JARVIS-ML, and JARVIS-tools. To date, JARVIS consists of ≈40,000 materials and ≈1 million calculated properties in JARVIS-DFT, ≈500 materials and ≈110 force-fields in JARVIS-FF, and ≈25 ML models for material-property predictions in JARVIS-ML, all of which are continuously expanding. JARVIS-tools provides scripts and workflows for running and analyzing various simulations. We compare our computational data to experiments or high-fidelity computational methods wherever applicable to evaluate error/uncertainty in predictions. In addition to the existing workflows, the infrastructure can support a wide variety of other technologically important applications as part of the data-driven materials design paradigm. The JARVIS datasets and tools are publicly available at the website: https://jarvis.nist.gov . 
    more » « less