BACKGROUND Charles Darwin’s Descent of Man, and Selection in Relation to Sex tackled the two main controversies arising from the Origin of Species: the evolution of humans from animal ancestors and the evolution of sexual ornaments. Most of the book focuses on the latter, Darwin’s theory of sexual selection. Research since supports his conjecture that songs, perfumes, and intricate dances evolve because they help secure mating partners. Evidence is overwhelming for a primary role of both male and female mate choice in sexual selection—not only through premating courtship but also through intimate interactions during and long after mating. But what makes one prospective mate more enticing than another? Darwin, shaped by misogyny and sexual prudery, invoked a “taste for the beautiful” without speculating on the origin of the “taste.” How to explain when the “final marriage ceremony” is between two rams? What of oral sex in bats, cloacal rubbing in bonobos, or the sexual spectrum in humans, all observable in Darwin’s time? By explaining desire through the lens of those male traits that caught his eyes and those of his gender and culture, Darwin elided these data in his theory of sexual evolution. Work since Darwin has focused on how traits and preferences coevolve. Preferences can evolve even if attractive signals only predict offspring attractiveness, but most attention has gone to the intuitive but tenuous premise that mating with gorgeous partners yields vigorous offspring. By focusing on those aspects of mating preferences that coevolve with male traits, many of Darwin’s influential followers have followed the same narrow path. The sexual selection debate in the 1980s was framed as “good genes versus runaway”: Do preferences coevolve with traits because traits predict genetic benefits, or simply because they are beautiful? To the broader world this is still the conversation. ADVANCES Even as they evolve toward ever-more-beautiful signals and healthier offspring, mate-choice mechanisms and courter traits are locked in an arms race of coercion and resistance, persuasion and skepticism. Traits favored by sexual selection often do so at the expense of chooser fitness, creating sexual conflict. Choosers then evolve preferences in response to the costs imposed by courters. Often, though, the current traits of courters tell us little about how preferences arise. Sensory systems are often tuned to nonsexual cues like food, favoring mating signals resembling those cues. And preferences can emerge simply from selection on choosing conspecifics. Sexual selection can therefore arise from chooser biases that have nothing to do with ornaments. Choice may occur before mating, as Darwin emphasized, but individuals mate multiple times and bias fertilization and offspring care toward favored partners. Mate choice can thus occur in myriad ways after mating, through behavioral, morphological, and physiological mechanisms. Like other biological traits, mating preferences vary among individuals and species along multiple dimensions. Some of this is likely adaptive, as different individuals will have different optimal mates. Indeed, mate choice may be more about choosing compatible partners than picking the “best” mate in the absolute sense. Compatibility-based choice can drive or reinforce genetic divergence and lead to speciation. The mechanisms underlying the “taste for the beautiful” determine whether mate choice accelerates or inhibits reproductive isolation. If preferences are learned from parents, or covary with ecological differences like the sensory environment, then choice can promote genetic divergence. If everyone shares preferences for attractive ornaments, then choice promotes gene flow between lineages. OUTLOOK Two major trends continue to shift the emphasis away from male “beauty” and toward how and why individuals make sexual choices. The first integrates neuroscience, genomics, and physiology. We need not limit ourselves to the feathers and dances that dazzled Darwin, which gives us a vastly richer picture of mate choice. The second is that despite persistent structural inequities in academia, a broader range of people study a broader range of questions. This new focus confirms Darwin’s insight that mate choice makes a primary contribution to sexual selection, but suggests that sexual selection is often tangential to mate choice. This conclusion challenges a persistent belief with sinister roots, whereby mate choice is all about male ornaments. Under this view, females evolve to prefer handsome males who provide healthy offspring, or alternatively, to express flighty whims for arbitrary traits. But mate-choice mechanisms also evolve for a host of other reasons Understanding mate choice mechanisms is key to understanding how sexual decisions underlie speciation and adaptation to environmental change. New theory and technology allow us to explicitly connect decision-making mechanisms with their evolutionary consequences. A century and a half after Darwin, we can shift our focus to females and males as choosers, rather than the gaudy by-products of mate choice. Mate choice mechanisms across domains of life. Sensory periphery for stimulus detection (yellow), brain for perceptual integration and evaluation (orange), and reproductive structures for postmating choice among pollen or sperm (teal). ILLUSTRATION: KELLIE HOLOSKI/ SCIENCE
more »
« less
This content will become publicly available on December 19, 2023
The importance of thinking about the future in culture and cumulative cultural evolution
Thinking about possibilities plays a critical role in the choices humans make throughout their lives. Despite this, the influence of individuals' ability to consider what is possible on culture has been largely overlooked. We propose that the ability to reason about future possibilities or prospective cognition, has consequences for cultural change, possibly facilitating the process of cumulative cultural evolution. In particular, by considering potential future costs and benefits of specific behaviours, prospective cognition may lead to a more flexible use of cultural behaviours. In species with limited planning abilities, this may lead to the development of cultures that promote behaviours with future benefits, circumventing this limitation. Here, we examine these ideas from a comparative perspective, considering the relationship between human and nonhuman assessments of future possibilities and their cultural capacity to invent new solutions and improve them over time. Given the methodological difficulties of assessing prospective cognition across species, we focus on planning, for which we have the most data in other species. Elucidating the role of prospective cognition in culture will help us understand the variability in when and how we see culture expressed, informing ongoing debates, such as that surrounding which social learning mechanisms underlie culture. This article is part of the theme issue ‘Thinking about possibilities: mechanisms, ontogeny, functions and phylogeny’.
more »
« less
- NSF-PAR ID:
- 10434724
- Date Published:
- Journal Name:
- Philosophical Transactions of the Royal Society B: Biological Sciences
- Volume:
- 377
- Issue:
- 1866
- ISSN:
- 0962-8436
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Background The growing understanding of the oppressive inequities that exist in postsecondary education has led to an increasing need for culturally relevant pedagogy. Researchers have found evidence that beliefs about the nature of knowledge predict pedagogical practices. Culturally relevant pedagogy supports students in ways that leverage students’ own cultures through three tenets: academic success, cultural competence, and sociopolitical consciousness. If STEM practitioners believe that their disciplines are culture-free, they may not enact culturally relevant pedagogy in their courses. We investigated how and in what forms 40 faculty from mathematics, physics, chemistry, and biology departments at Hispanic-Serving Institutions enacted culturally relevant pedagogy. We used the framework of practical rationality to understand how epistemological beliefs about the nature of their discipline combined with their institutional context impacted instructors’ decision to enact practices aligning with the three tenets of culturally relevant pedagogy. Results In total, 35 instructors reported using practices that aligned with the academic success tenet, nine instructors with the cultural competence tenet, and one instructor with the sociopolitical consciousness tenet. Instructors expressed and even lauded their disciplines’ separation from culture while simultaneously expressing instructional decisions that aligned with culturally relevant pedagogy. Though never asked directly, six instructors made statements reflecting a “culture-free” belief about knowledge in their discipline such as “To me, mathematics has no color.” Five of those instructors also described altering their teaching in ways that aligned with the academic success tenet. The framework of practical rationality helped explain how the instructors’ individual obligation (to the needs of individual students) and interpersonal obligation (to the social environment of the classroom) played a role in those decisions. Conclusions Instructors’ ability to express two contradictory views may indicate that professional development does not have to change an instructor’s epistemological beliefs about their discipline to convince them of the value of enacting culturally relevant pedagogy. We propose departmental changes that could enable instructors to decide to cultivate students’ cultural competence and sociopolitical consciousness. Our findings highlight the need for future research investigating the impacts of culturally relevant pedagogical content knowledge on students’ experiences.more » « less
-
We are focusing on three interconnected issues that negatively impact engineering disciplinary cultures: (1) diversity and inclusion issues that continue to plague engineering programs; (2) lack of adequate preparation for professional practices; (3) and exclusionary engineering disciplinary cultures that privilege technical knowledge over other forms of knowledge [1]. Although much effort has been devoted to these issues, traditional strategic and problem-solving orientations have not resulted in deep cultural transformations in many engineering programs. We posit that these three issues that are wicked problems. Wicked problems are ambiguous, interrelated and require complex problem-scoping and solutions that are not amenable with traditional and linear strategic planning and problem-solving orientations [2]. As design thinking provides an approach to solve complex problems that occur in organizational cultures [3], we argue that these wicked problems of engineering education cultures might be best understood and resolved through design thinking. As Elsbach and Stigliani contend, “the effective use of design thinking tools in organizations had a profound effect on organizational culture” [3, p. 2279]. However, not all organizational cultures support design thinking approaches well. Despite increasing calls to teach design as a central part of professional formation (e.g., ABET, National Academy of Engineers, etc.), many engineering programs, especially larger, legacy programs have not embraced fundamental design thinking [4-5] strategies or values [6-7]. According to Godfrey and Parker, many engineering cultures are characterized by linear epistemologies, “black and white” approaches to problem solving, and strategic “top down” ways of designing [8]. In contrast, design thinking approaches are characterized by ways of thinking and designing that prioritize prototyping, multiple stakeholder perspectives, and iterative problem-solving to address complex problems. In this paper, we examine the effectiveness of design thinking as a tool to address wicked problems in engineering education cultures, and the role of engineering culture itself in shaping the application and effectiveness of design thinking. More specially, we evaluate the role of design thinking in seeking cultural transformation at a School of Electrical and Computer Engineering (ECE) at Purdue University. We analyze interviews of members of the School after they participated in six design thinking sessions. Our previous research explored the effect of design thinking sessions on participant understanding of diversity and inclusion in biomedical engineering [9]. Herein, we explore participant experiences of design thinking sessions toward cultural change efforts regarding diversity and inclusion (D&I) within professional formation in ECE. We identified three tensions (push/pull dynamics of contradictions) that emerged from the participants’ experiences in the design sessions [10]. We conclude by discussing our emerging insights into the effectiveness of design thinking toward cultural change efforts in engineering.more » « less
-
The low numbers of women and underrepresented minorities in engineering has often been characterized as a ‘pipeline problem,’ wherein few members of these groups choose engineering majors or ‘leak out’ of the engineering education pipeline before graduating [1]. Within this view, the difficulty of diversifying the engineering workforce can be addressed by stocking the pipeline with more diverse applicants. However, the assumption that adding more underrepresented applicants will solve the complex and persistent issues of diversity and inclusion within engineering has been challenged by recent research. Studies of engineering culture highlight how the persistence of women and minorities is linked to norms and assumptions of engineering cultures (e.g., [2], [3]). For example, some engineering cultures have been characterized as masculine, leading women to feel that they must become ‘one of the guys’ to fit in and be successful (e.g., [4]). In the U.S., engineering cultures are also predominantly white, which can make people of color feel unwelcome or isolated [5]. When individuals feel unwelcome in engineering cultures, they are likely to leave. Thus, engineering culture plays an important role in shaping who participates and successfully persists in engineering education and practice. Likewise, disciplinary cultures in engineering education also carry assumptions about what resources students should possess and utilize throughout their professional development. For example, educational cultures may assume students possess certain forms of ‘academic capital,’ such as rigorous training in STEM subjects prior to college. They might also assume students possess ‘navigational capital,’ or the ability to locate and access resources in the university system. However, these cultural assumptions have implications for the diversity and inclusivity of educational environments, as they shape what kinds of students are likely to succeed. For instance, first generation college (FGC) students may not possess the same navigational capital as continuing generation students [5]. Under-represented minority (URM) students often receive less pre-college training in STEM than their white counterparts [6]. However, FGC and URM students possess many forms of capital that often are unrecognized by education systems, for example, linguistic capital, or the ability to speak in multiple languages and styles) [7], [8]. Educational cultures that assume everyone possesses the same kinds of capital (i.e. that of white, American, high SES, and continuing generation students) construct barriers for students from diverse backgrounds. Thus, we propose that examining culture is essential for understanding the underlying assumptions and beliefs that give rise to the challenging issues surrounding the lack of diversity and inclusion in engineering. This case study examines the culture of a biomedical engineering (BME) program at a large Midwestern university and identifies underlying assumptions regarding what sources of cultural and social capital undergraduate students need to be successful. By tracing when and how students draw upon these forms of capital during their professional development, we examine the implications for students from diverse backgrounds, particularly FGC and URM students.more » « less
-
Natural selection has evidently mediated many species characteristics relevant to the evolution of learning, including longevity, length of the juvenile period, social organization, timing of cognitive and motor development, and age-related shifts in behavioural propensities such as activity level, flexibility in problem-solving and motivation to seek new information. Longitudinal studies of wild populations can document such changes in behavioural propensities, providing critical information about the contexts in which learning strategies develop, in environments similar to those in which learning strategies evolved. The Lomas Barbudal Monkey Project provides developmental data for the white-faced capuchin, Cebus capucinus , a species that has converged with humans regarding many life-history and behavioural characteristics. In this dataset, focused primarily on learned aspects of foraging behaviour, younger capuchins are more active overall, more curious and opportunistic, and more prone to inventing new investigative and foraging-related behaviours. Younger individuals more often seek social information by watching other foragers (especially older foragers). Younger individuals are more creative, playful and inventive, and less neophobic, exhibiting a wider range of behaviours when engaged in extractive foraging. Whereas adults more often stick with old solutions, younger individuals often incorporate recently acquired experience (both social and asocial) when foraging. This article is part of the theme issue ‘Life history and learning: how childhood, caregiving and old age shape cognition and culture in humans and other animals'.more » « less