skip to main content


Title: The Relation Between Decadal Droughts and Eruptions of Steamboat Geyser in Yellowstone National Park, USA
Abstract

In the past century, most eruptions of Steamboat Geyser in Yellowstone National Park's Norris Geyser Basin were mainly clustered in three episodes: 1961–1969, 1982–1984, and ongoing since 2018. These eruptive episodes resulted in extensive disturbance to surrounding trees. To characterize tree response over time as an indicator of geyser activity adjustments to climate variability, aerial and ground images were analyzed to document changes in tree coverage around the geyser since 1954. Radiocarbon dating of silicified tree remnants from within 14 m of the geyser vent was used to examine geyser response to possible variations in decadal to centennial precipitation patterns. We searched for atypical or absent growth rings in cores from live trees in years associated with large geyser eruptions. Photographs indicate that active eruptive phases have adversely affected trees up to 30 m from the vent, primarily in the dominant downwind direction. Radiocarbon dates indicate that the geyser formed before 1878, in contrast to the birthdate reported in historical documents. Further, the ages of the silicified trees cluster within three episodes that are temporally correlated with periods of relative drought in the Yellowstone region during the 15th–17th centuries. The discontinuous growth of trees around the geyser suggests that changes in eruptive patterns occur in response to decadal to multidecadal droughts. This inference is supported by the lack of silicified specimens with more than 20 annual rings and by the existence of atypical or missing rings in live trees during periods of extended geyser activity.

 
more » « less
NSF-PAR ID:
10434838
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
24
Issue:
7
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    To characterize eruption activity of the iconic Old Faithful Geyser in Yellowstone National Park over past centuries, we obtained 41 new radiocarbon dates of mineralized wood preserved in the mound of silica that precipitated from erupted waters. Trees do not grow on active geyser mounds, implying that trees grew on the Old Faithful Geyser mound during a protracted period of eruption quiescence. Rooted stumps and root crowns located on higher parts of the mound are evidence that at the time of tree growth, the geyser mound closely resembled its current appearance. The range of calibrated radiocarbon dates (1233–1362 CE) is coincident with a series of severe multidecadal regional droughts toward the end of the Medieval Climate Anomaly, prior to the onset of the Little Ice Age. Climate models project increasingly severe droughts by mid‐21st century, suggesting that geyser eruptions could become less frequent or completely cease.

     
    more » « less
  2. Abstract

    Steamboat Geyser in Yellowstone National Park is the tallest active geyser on Earth and is believed to have hydrologic connection to Cistern Spring, a hydrothermal pool ∼100 m southwest from the geyser vent. Despite broad scientific interest, rare episodic Steamboat eruptions have made it difficult to study its eruption dynamics and underground plumbing architecture. In response to the recent reactivation of Steamboat, which has produced more than 130 eruptions since March 2018, we deployed a dense seismic nodal array surrounding the enigmatic geyser in the summer of 2019. The array recorded abundant 1–5 Hz hydrothermal tremor originating from phase‐transition events within both Steamboat Geyser and Cistern Spring. To constrain the spatiotemporal distribution of the tremor sources, an interferometric‐based polarization analysis was developed. The observed tremor locations indicate that the conduit beneath Steamboat is vertical and extends down to ∼120 m depth and the plumbing of Cistern includes a shallow vertical conduit connecting with a deep, large, and laterally offset reservoir ∼60 m southeast of the surface pool. No direct connection between Steamboat and Cistern plumbing structures is found. The temporal variation of tremor combined within situtemperature and water depth measurements of Cistern reveals interaction between Steamboat and Cistern throughout the eruption/recharge cycles. The observed delayed responses of Cistern Spring in reaction to Steamboat eruptions and recharge suggest that the two plumbing structures may be connected through a fractured/porous medium instead of a direct open channel, consistent with our inferred plumbing structure.

     
    more » « less
  3. Abstract

    Geysers are rare geologic features that intermittently discharge liquid water and steam driven by heating and decompression boiling. The cause of variability in eruptive styles and the associated seismic signals are not well understood. Data collected from five broadband seismometers at Lone Star Geyser, Yellowstone National Park are used to determine the properties, location, and temporal patterns of hydrothermal tremor. The tremor is harmonic at some stages of the eruption cycle and is caused by near‐periodic repetition of discrete seismic events. Using the polarization of ground motion, we identify the location of tremor sources throughout several eruption cycles. During preplay episodes (smaller eruptions preceding the more vigorous major eruption), tremor occurs at depths of 7–10 m and is laterally offset from the geyser's cone by ~5 m. At the onset of the main eruption, tremor sources migrate laterally and become shallower. As the eruption progresses, tremor sources migrate along the same path but in the opposite direction, ending where preplay tremor originates. The upward and then downward migration of tremor sources during eruptions are consistent with warming of the conduit followed by evacuation of water during the main eruption. We identify systematic relations among the two types of preplays, discharge, and the main eruption. A point‐source moment tensor fit to low‐frequency waveforms of an individual tremor event using half‐space velocity models indicates averageVS  0.8 km/s, source depths ~4–20 m, and moment tensors with primarily positive isotropic and compensated linear vector dipole moments.

     
    more » « less
  4. Paleoclimate reconstructions for the western US show spatial variability in the timing, duration, and magnitude of climate changes within the Medieval Climate Anomaly (MCA, ca. 900–1350 CE) and Little Ice Age (LIA, ca. 1350–1850 CE), indicating that additional data are needed to more completely characterize late-Holocene climate change in the region. Here, we use dendrochronology to investigate how climate changes during the MCA and LIA affected a treeline, whitebark pine ( Pinus albicaulis Engelm.) ecosystem in the Greater Yellowstone Ecoregion (GYE). We present two new millennial-length tree-ring chronologies and multiple lines of tree-ring evidence from living and remnant whitebark pine and Engelmann spruce ( Picea engelmannii Parry ex. Engelm.) trees, including patterns of establishment and mortality; changes in tree growth; frost rings; and blue-intensity-based, reconstructed summer temperatures, to highlight the terminus of the LIA as one of the coldest periods of the last millennium for the GYE. Patterns of tree establishment and mortality indicate conditions favorable to recruitment during the latter half of the MCA and climate-induced mortality of trees during the middle-to-late LIA. These patterns correspond with decreased growth, frost damage, and reconstructed cooler temperature anomalies for the 1800–1850 CE period. Results provide important insight into how past climate change affected important GYE ecosystems and highlight the value of using multiple lines of proxy evidence, along with climate reconstructions of high spatial resolution, to better describe spatial and temporal variability in MCA and LIA climate and the ecological influence of climate change. 
    more » « less
  5. null (Ed.)
    Steamboat Geyser in Yellowstone National Park’s Norris Geyser Basin began a prolific sequence of eruptions in March 2018 after 34 y of sporadic activity. We analyze a wide range of datasets to explore triggering mechanisms for Steamboat’s reactivation and controls on eruption intervals and height. Prior to Steamboat’s renewed activity, Norris Geyser Basin experienced uplift, a slight increase in radiant temperature, and increased regional seismicity, which may indicate that magmatic processes promoted reactivation. However, because the geothermal reservoir temperature did not change, no other dormant geysers became active, and previous periods with greater seismic moment release did not reawaken Steamboat, the reason for reactivation remains ambiguous. Eruption intervals since 2018 (3.16 to 35.45 d) modulate seasonally, with shorter intervals in the summer. Abnormally long intervals coincide with weakening of a shallow seismic source in the geyser basin’s hydrothermal system. We find no relation between interval and erupted volume, implying unsteady heat and mass discharge. Finally, using data from geysers worldwide, we find a correlation between eruption height and inferred depth to the shallow reservoir supplying water to eruptions. Steamboat is taller because water is stored deeper there than at other geysers, and, hence, more energy is available to power the eruptions. 
    more » « less