skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Resonant coupling of molecular excitons and optical anapoles in silicon nanosphere-J-aggregate heterostructures under vector beam illumination
Resonant excitation of high-index dielectric nanostructures and their coupling with molecular excitons provide great opportunities for engineering adaptable platforms for hybrid functional optical devices. Here, we numerically calculate resonance coupling of nonradiating anapole states to molecular excitons within silicon nanosphere-J-aggregate heterostructures under illumination with radially polarized cylindrical vector beams. The results show that the resonance coupling is accompanied by a scattering peak around the exciton transition frequency, and the anapole state splits into a pair of anticrossing eigenmodes with a mode splitting energy of ≈200meV. We also investigate the resonance coupling as a function of the J-aggregate parameters, such as thickness, exciton transition linewidth, and oscillator strength. Resonant coupling of the anapole states and J-aggregate heterostructures could be a promising platform for future nanophotonic applications such as in information processing and sensing.  more » « less
Award ID(s):
2208240
PAR ID:
10434958
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Applied Optics
Volume:
62
Issue:
20
ISSN:
1559-128X
Page Range / eLocation ID:
5487
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Frenkel excitons are the primary photoexcitations in organic semiconductors and are ultimately responsible for the optical properties of such materials. They are also predicted to form bound exciton pairs, termed biexcitons, which are consequential intermediates in a wide range of photophysical processes. Generally, we think of bound states as arising from an attractive interaction. However, here, we report on our recent theoretical analysis, predicting the formation of stable biexciton states in a conjugated polymer material arising from both attractive and repulsive interactions. We show that in J-aggregate systems, 2J-biexcitons can arise from repulsive dipolar interactions with energies E 2 J > 2 E J , while in H-aggregates, 2H-biexciton states with energies E 2 H < 2 E H can arise corresponding to attractive dipole exciton/exciton interactions. These predictions are corroborated by using ultrafast double-quantum coherence spectroscopy on a [poly(2,5-bis(3-hexadecylthiophene-2-yl)thieno[3,2-b]thiophene)] material that exhibits both J- and H-like excitonic behavior. 
    more » « less
  2. Recent helicity−resolved magneto−Raman spectroscopy measurement demonstrates large effective phonon magnetic moments of ~2.5 $$\mu_B$$ in monolayer MoS$$_2$$, highlighting resonant excitation of bright excitons as a feasible route to activate $$\Gamma$$−point circularly polarized phonons in transition metal dichalcogenides. However, a microscopic picture of this intriguing phenomenon remains lacking. In this work, we show that an orbital transition between the split conduction bands ($$\Delta_0$$ = 4 meV) of MoS$$_2$$ couples to the doubly degenerate $$E^{′′}$$ phonon mode ($$\Omega_0$$ = 33 meV), forming two hybridized states. Our phononic and electronic Raman scattering measurements capture these two states: (i) one with predominantly phonon contribution in the helicity−switched channels, and (ii) one with primarily orbital contribution in the helicity−conserved channels. An orbital−phonon coupling model successfully reproduces the large effective magnetic moments of the circularly polarized phonons and explains their thermodynamic properties. Strikingly, the Raman mode from the orbital transition is superimposed on a strong quasi−elastic scattering background, indicating the presence of spin fluctuations. As a result, the electrons excited to the conduction bands through the exciton exhibit paramagnetic behavior although MoS$$_2$$ is generally considered as a non-magnetic material. By depositing nanometer−thickness nickel thin films on monolayer MoS$$_2$$, we tune the electronic structure so that the A exciton perfectly overlaps with the 633 nm laser. The optimization of resonance excitation leads to pronounced tunability of the orbital−phonon hybridized states. Our results generalize the orbital−phonon coupling model of effective phonon magnetic moments to material systems beyond the paramagnets and magnets. 
    more » « less
  3. Coupling between exciton states across the Brillouin zone in monolayer transition metal dichalcogenides can lead to ultrafast valley depolarization. Using time- and angle-resolved photoemission, we present momentum- and energy-resolved measurements of exciton coupling in monolayer WS2. By comparing full 4D (kx,ky,E,t) data sets after both linearly and circularly polarized excitation, we are able to disentangle intervalley and intravalley exciton coupling dynamics. Recording in the exciton binding energy basis instead of excitation energy, we observe strong mixing between the B1s exciton and An>1 states. The photoelectron energy and momentum distributions observed from excitons populated via intervalley coupling (e.g. K− → K+) indicate that the dominant valley depolarization mechanism conserves the exciton binding energy and center-of-mass momentum, consistent with intervalley Coulomb exchange. On longer timescales, exciton relaxation is accompanied by contraction of the momentum space distribution. 
    more » « less
  4. Understanding excitonic dynamics in two-dimensional semiconducting transition metal dichalcogenides is important for developing their optoelectronic applications. Recently, transient absorption techniques based on resonant excitonic absorption have been used to study various aspects of excitonic dynamics in these materials. The transient absorption in such measurements originates from phase-space state filling, bandgap renormalization, or screening effects. Here we report a new method to probe excitonic dynamics based on exciton intraband absorption. In this Drude-like process, probe photons are absorbed by excitons in their intraband excitation to higher energy states, causing a transient absorption signal. Although the magnitude of the transient absorption is lower than that of the resonant techniques, the new method is less restrictive on the selection of probe wavelength, has a larger linear range, and can provide complementary information on photocarrier dynamics. Using the WS 2 monolayer and bulk samples as examples, we show that the new method can probe exciton–exciton annihilation at high densities and reveal exciton formation processes. We also found that the exciton intraband absorption cross section of the WS 2 monolayer is on the order of 10 −18 cm 2 . 
    more » « less
  5. Strong interactions between excitons are a characteristic feature of two-dimensional (2D) semiconductors, determining important excitonic properties, such as exciton lifetime, coherence, and photon-emission efficiency. Rhenium disulfide (ReS2), a member of the 2D transition-metal dichalcogenide (TMD) family, has recently attracted great attention due to its unique excitons that exhibit excellent polarization selectivity and coherence features. However, an in-depth understanding of exciton-exciton interactions in ReS2 is still lacking. Here we used ultrafast pump-probe spectroscopy to study exciton-exciton interactions in monolayer (1L), bilayer (2L), and triple layer ReS2. We directly measure the rate of exciton-exciton annihilation, a representative Auger-type interaction between excitons. It decreases with increasing layer number, as observed in other 2D TMDs. However, while other TMDs exhibit a sharp weakening of exciton-exciton annihilation between 1L and 2L, such behavior was not observed in ReS2. We attribute this distinct feature in ReS2 to the relatively weak interlayer coupling, which prohibits a substantial change in the electronic structure when the thickness varies. This work not only highlights the unique excitonic properties of ReS2 but also provides novel insight into the thickness dependence of exciton-exciton interactions in 2D systems. 
    more » « less