skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Hamilton–Jacobi-based proximal operator
First-order optimization algorithms are widely used today. Two standard building blocks in these algorithms are proximal operators (proximals) and gradients. Although gradients can be computed for a wide array of functions, explicit proximal formulas are known for only limited classes of functions. We provide an algorithm, HJ-Prox, for accurately approximating such proximals. This is derived from a collection of relations between proximals, Moreau envelopes, Hamilton–Jacobi (HJ) equations, heat equations, and Monte Carlo sampling. In particular, HJ-Prox smoothly approximates the Moreau envelope and its gradient. The smoothness can be adjusted to act as a denoiser. Our approach applies even when functions are accessible only by (possibly noisy) black box samples. We show that HJ-Prox is effective numerically via several examples.  more » « less
Award ID(s):
2208272
PAR ID:
10434965
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Volume:
120
Issue:
14
ISSN:
0027-8424
Page Range / eLocation ID:
1-6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes and develops a new Newton-type algorithm to solve subdifferential inclusions defined by subgradients of extended real-valued prox-regular functions. The proposed algorithm is formulated in terms of the second order subdifferential of such functions that enjoy extensive calculus rules and can be efficiently computed for broad classes of extended real-valued functions. Based on this and on the metric regularity and subregularity properties of subgradient mappings, we establish verifiable conditions ensuring the well-posedness of the proposed algorithm and its local superlinear convergence. The obtained results are also new for the class of equations defined by continuously differentiable functions with Lipschitzian gradients ([Formula: see text] functions), which is the underlying case of our consideration. The developed algorithms for prox-regular functions and their extension to a structured class of composite functions are formulated in terms of proximal mappings and forward–backward envelopes. Besides numerous illustrative examples and comparison with known algorithms for [Formula: see text] functions and generalized equations, the paper presents applications of the proposed algorithms to regularized least square problems arising in statistics, machine learning, and related disciplines. Funding: Research of P. D. Khanh is funded by Ho Chi Minh City University of Education Foundation for Science and Technology [Grant CS.2022.19.20TD]. Research of B. Mordukhovich and V. T. Phat was partly supported by the U.S. National Science Foundation [Grants DMS-1808978 and DMS-2204519]. The research of B. Mordukhovich was also supported by the Air Force Office of Scientific Research [Grant 15RT0462] and the Australian Research Council under Discovery Project DP-190100555. This work was supported by the Air Force Office of Scientific Research [Grant 15RT0462]. 
    more » « less
  2. Tasks across diverse application domains can be posed as large-scale optimization problems, these include graphics, vision, machine learning, imaging, health, scheduling, planning, and energy system forecasting. Independently of the application domain, proximal algorithms have emerged as a formal optimization method that successfully solves a wide array of existing problems, often exploiting problem-specific structures in the optimization. Although model-based formal optimization provides a principled approach to problem modeling with convergence guarantees, at first glance, this seems to be at odds with black-box deep learning methods. A recent line of work shows that, when combined with learning-based ingredients, model-based optimization methods are effective, interpretable, and allow for generalization to a wide spectrum of applications with little or no extra training data. However, experimenting with such hybrid approaches for different tasks by hand requires domain expertise in both proximal optimization and deep learning, which is often error-prone and time-consuming. Moreover, naively unrolling these iterative methods produces lengthy compute graphs, which when differentiated via autograd techniques results in exploding memory consumption, making batch-based training challenging. In this work, we introduce ∇-Prox, a domain-specific modeling language and compiler for large-scale optimization problems using differentiable proximal algorithms. ∇-Prox allows users to specify optimization objective functions of unknowns concisely at a high level, and intelligently compiles the problem into compute and memory-efficient differentiable solvers. One of the core features of ∇-Prox is its full differentiability, which supports hybrid model- and learning-based solvers integrating proximal optimization with neural network pipelines. Example applications of this methodology include learning-based priors and/or sample-dependent inner-loop optimization schedulers, learned with deep equilibrium learning or deep reinforcement learning. With a few lines of code, we show ∇-Prox can generate performant solvers for a range of image optimization problems, including end-to-end computational optics, image deraining, and compressive magnetic resonance imaging. We also demonstrate ∇-Prox can be used in a completely orthogonal application domain of energy system planning, an essential task in the energy crisis and the clean energy transition, where it outperforms state-of-the-art CVXPY and commercial Gurobi solvers. 
    more » « less
  3. We study approximations to the Moreau envelope—and infimal convolutions more broadly—based on Laplace’s method, a classical tool in analysis which ties certain integrals to suprema of their integrands. We believe the connection between Laplace’s method and infimal convolutions is generally deserving of more attention in the study of optimization and partial differential equations, since it bears numerous potentially important applications, from proximal-type algorithms to Hamilton-Jacobi equations. 
    more » « less
  4. Understanding the role that subgradients play in various second-order variational anal- ysis constructions can help us uncover new properties of important classes of functions in variational analysis. Focusing mainly on the behavior of the second subderivative and subgradient proto-derivative of polyhedral functions, i.e., functions with poly- hedral convex epigraphs, we demonstrate that choosing the underlying subgradient, utilized in the definitions of these concepts, from the relative interior of the subdif- ferential of polyhedral functions ensures stronger second-order variational properties such as strict twice epi-differentiability and strict subgradient proto-differentiability. This allows us to characterize continuous differentiability of the proximal mapping and twice continuous differentiability of the Moreau envelope of polyhedral functions. We close the paper with proving the equivalence of metric regularity and strong metric regularity of a class of generalized equations at their nondegenerate solutions. 
    more » « less
  5. We propose and analyze a block coordinate descent proximal algorithm (BCD-prox) for simultaneous filtering and parameter estimation of ODE models. As we show on ODE systems with up to d=40 dimensions, as compared to state-of-the-art methods, BCD-prox exhibits increased robustness (to noise, parameter initialization, and hyperparameters), decreased training times, and improved accuracy of both filtered states and estimated parameters. We show how BCD-prox can be used with multistep numerical discretizations, and we establish convergence of BCD-prox under hypotheses that include real systems of interest. 
    more » « less