Network operators need to run diverse measurement tasks on programmable switches to support management decisions (e.g., traffic engineering or anomaly detection). While prior work has shown the viability of running a single sketch instance, they largely ignore the problem of running an ensemble of sketch instances for a collection of measurement tasks. As such, existing efforts fall short of efficiently supporting a general ensemble of sketch instances. In this work, we present the design and implementation of Sketchovsky, a novel crosssketch optimization and composition framework. We identify five new cross-sketch optimization building blocks to reduce critical switch hardware resources. We design efficient heuristics to select and apply these building blocks for arbitrary ensembles. To simplify developer effort, Sketchovsky automatically generates the composed code to be input to the hardware compiler. Our evaluation shows that Sketchovsky makes ensembles with up to 18 sketch instances become feasible and can reduce up to 45% of the critical hardware resources.
more »
« less
Sketchovsky: Enabling Ensembles of Sketches on Programmable Switches
Network operators need to run diverse measurement tasks on programmable switches to support management decisions (e.g., traffic engineering or anomaly detection). While prior work has shown the viability of running a single sketch instance, they largely ignore the problem of running an ensemble of sketch instances for a collection of measurement tasks. As such, existing efforts fall short of efficiently supporting a general ensemble of sketch instances. In this work, we present the design and implementation of Sketchovsky, a novel cross-sketch optimization and composition framework. We identify five new cross-sketch optimization building blocks to reduce critical switch hardware resources. We design efficient heuristics to select and apply these building blocks for arbitrary ensembles. To simplify developer effort, Sketchovsky automatically generates the composed code to be input to the hardware compiler. Our evaluation shows that Sketchovsky makes ensembles with up to 18 sketch instances become feasible and can reduce up to 45% of the critical hardware resources.
more »
« less
- PAR ID:
- 10435089
- Date Published:
- Journal Name:
- The 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI'23))
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Network monitoring and measurement have always been critical components of network management. Recent developments in sketch-based monitoring techniques and the deployment opportunities arising from the increasing programmability of network elements (e.g., programmable switches, SmartNICs, and software switches) have made the possibility of accurate, detailed, network-wide telemetry tantalizingly within reach. However, the wide heterogeneity of the programmable hardware and dynamic changes in both resources available and resources needed for monitoring over time make existing approaches to network-wide monitoring impractical. We present HeteroSketch, a framework that consists of two main components: (1) a profiling tool that automatically quantifies the capabilities of arbitrary hardware by predicting their performance for sketching algorithms, and (2) an optimization framework that decides placement of measurement tasks and resource allocation for devices to meet monitoring goals while considering heterogeneous device capabilities. HeteroSketch enables optimized deployments for large networks (> 40,000 nodes) using a novel clustering approach and enables prompt responses to network topology, traffic, query, and resource dynamics. Our evaluation shows that HeteroSketch reduces resource overheads by 20-60% compared to prior art, while maintaining monitoring performance, coverage, and accuracy.more » « less
-
Network monitoring and measurement have always been critical components of network management. Recent developments in sketch-based monitoring techniques and the deployment opportunities arising from the increasing programmability of network elements (e.g., programmable switches, SmartNICs, and software switches) have made the possibility of accurate, detailed, network-wide telemetry tantalizingly within reach. However, the wide heterogeneity of the programmable hardware and dynamic changes in both resources available and resources needed for monitoring over time make existing approaches to network-wide monitoring impractical. We present HeteroSketch, a framework that consists of two main components: (1) a profiling tool that automatically quantifies the capabilities of arbitrary hardware by predicting their performance for sketching algorithms, and (2) an optimization framework that decides placement of measurement tasks and resource allocation for devices to meet monitoring goals while considering heterogeneous device capabilities. HeteroSketch enables optimized deployments for large networks (> 40,000 nodes) using a novel clustering approach and enables prompt responses to network topology, traffic, query, and resource dynamics. Our evaluation shows that HeteroSketch reduces resource overheads by 20-60% compared to prior art, while maintaining monitoring performance, coverage, and accuracy.more » « less
-
Network monitoring and measurement have always been critical components of network management. Recent developments in sketch-based monitoring techniques and the deployment opportunities arising from the increasing programmability of network elements (e.g., programmable switches, SmartNICs, and software switches) have made the possibility of accurate, detailed, network-wide telemetry tantalizingly within reach. However, the wide heterogeneity of the programmable hardware and dynamic changes in both resources available and resources needed for monitoring over time make existing approaches to network-wide monitoring impractical. We present HeteroSketch, a framework that consists of two main components: (1) a profiling tool that automatically quantifies the capabilities of arbitrary hardware by predicting their performance for sketching algorithms, and (2) an optimization framework that decides placement of measurement tasks and resource allocation for devices to meet monitoring goals while considering heterogeneous device capabilities. HeteroSketch enables optimized deployments for large networks (> 40,000 nodes) using a novel clustering approach and enables prompt responses to network topology, traffic, query, and resource dynamics. Our evaluation shows that HeteroSketch reduces resource overheads by 20−60% compared to prior art, while maintaining monitoring performance, coverage, and accuracy.more » « less
-
Scientific breakthroughs in biomolecular methods and improvements in hardware technology have shifted from a long-running simulation to a large set of shorter simulations running simultaneously, called an ensemble. In an ensemble, simulations are usually coupled with analyses of data produced by the simulations. In situ methods can be used to analyze large volumes of data generated by scientific simulations at runtime (i.e., simulations and analyses are performed concurrently). In this work, we study the execution of ensemble-based simulations paired with in situ analyses using in-memory staging methods. Using an ensemble of molecular dynamics in situ workflows with multiple simulations and analyses, we first show that collecting traditional metrics such as makespan, instructions per cycle, memory usage, or cache miss ratio is not sufficient to characterize complex behaviors of ensembles. We propose a method to evaluate the performance of ensembles of workflows that captures multiple resource usage aspects: resource efficiency, resource allocation, and resource provisioning. Experimental results demonstrate that the proposed method can effectively distinguish the performance of different component placements in an ensemble with up to 32 ensemble members. By evaluating different co-location scenarios, our proposed performance indicators demonstrate benefits of co-locating simulation and coupled analyses within a compute node.more » « less
An official website of the United States government

