Title: Fully Dynamic Connectivity in $O(\log n(\log\log n)^2)$ Amortized Expected Time
Dynamic connectivity is one of the most fundamental problems in dynamic graphalgorithms. We present a randomized Las Vegas dynamic connectivity datastructure with $$O(\log n(\log\log n)^2)$$ amortized expected update time and$$O(\log n/\log\log\log n)$$ worst case query time, which comes very close to thecell probe lower bounds of Patrascu and Demaine (2006) and Patrascu and Thorup(2011). more »« less
Gorthi, Deepthi B; Parsons, Aaron R; Dillon, Joshua S
(, Monthly Notices of the Royal Astronomical Society)
null
(Ed.)
ABSTRACT Future generations of radio interferometers targeting the 21 cm signal at cosmological distances with N ≫ 1000 antennas could face a significant computational challenge in building correlators with the traditional architecture, whose computational resource requirement scales as $$\mathcal {O}(N^2)$$ with array size. The fundamental output of such correlators is the cross-correlation products of all antenna pairs in the array. The FFT-correlator architecture reduces the computational resources scaling to $$\mathcal {O}(N\log {N})$$ by computing cross-correlation products through a spatial Fourier transform. However, the output of the FFT-correlator is meaningful only when the input antenna voltages are gain- and phase-calibrated. Traditionally, interferometric calibration has used the $$\mathcal {O}(N^2)$$ cross-correlations produced by a standard correlator. This paper proposes two real-time calibration schemes that could work in parallel with an FFT-correlator as a self-contained $$\mathcal {O}(N\log {N})$$ correlator system that can be scaled to large-N redundant arrays. We compare the performance and scalability of these two calibration schemes and find that they result in antenna gains whose variance decreases as 1/log N with increase in the size of the array.
Chalermsook, Parinya; Das, Syamantak Das; Kook, Yunbum; Laekhanukit, Bundit; Liu, Yang P.; Peng, Richard Peng; Sellke, Mark; Vaz, Daniel
(, Proceedings of the 2021 {ACM-SIAM} Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021)
null
(Ed.)
Graph compression or sparsification is a basic information-theoretic and computational question. A major open problem in this research area is whether $$(1+\epsilon)$$-approximate cut-preserving vertex sparsifiers with size close to the number of terminals exist. As a step towards this goal, we initiate the study of a thresholded version of the problem: for a given parameter $$c$$, find a smaller graph, which we call \emph{connectivity-$$c$$ mimicking network}, which preserves connectivity among $$k$$ terminals exactly up to the value of $$c$$. We show that connectivity-$$c$$ mimicking networks of size $O(kc^4)$ exist and can be found in time $$m(c\log n)^{O(c)}$$. We also give a separate algorithm that constructs such graphs of size $$k \cdot O(c)^{2c}$$ in time $$mc^{O(c)}\log^{O(1)}n$$. These results lead to the first offline data structures for answering fully dynamic $$c$$-edge-connectivity queries for $$c \ge 4$$ in polylogarithmic time per query as well as more efficient algorithms for survivable network design on bounded treewidth graphs.
Helfgott, Harald Andrés; Thompson, Lola
(, Research in Number Theory)
Abstract We present a new elementary algorithm that takes $$ \textrm{time} \ \ O_\epsilon \left( x^{\frac{3}{5}} (\log x)^{\frac{8}{5}+\epsilon } \right) \ \ \textrm{and} \ \textrm{space} \ \ O\left( x^{\frac{3}{10}} (\log x)^{\frac{13}{10}} \right) $$ time O ϵ x 3 5 ( log x ) 8 5 + ϵ and space O x 3 10 ( log x ) 13 10 (measured bitwise) for computing $$M(x) = \sum _{n \le x} \mu (n),$$ M ( x ) = ∑ n ≤ x μ ( n ) , where $$\mu (n)$$ μ ( n ) is the Möbius function. This is the first improvement in the exponent of x for an elementary algorithm since 1985. We also show that it is possible to reduce space consumption to $$O(x^{1/5} (\log x)^{5/3})$$ O ( x 1 / 5 ( log x ) 5 / 3 ) by the use of (Helfgott in: Math Comput 89:333–350, 2020), at the cost of letting time rise to the order of $$x^{3/5} (\log x)^2 \log \log x$$ x 3 / 5 ( log x ) 2 log log x .
Chuzhoy, Julia; Gao, Yu; Li, Jason; Nanongkai, Danupon; Peng, Richard; Saranurak, Thatchaphol
(, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020)
null
(Ed.)
We consider the classical Minimum Balanced Cut problem: given a graph $$G$$, compute a partition of its vertices into two subsets of roughly equal volume, while minimizing the number of edges connecting the subsets. We present the first {\em deterministic, almost-linear time} approximation algorithm for this problem. Specifically, our algorithm, given an $$n$$-vertex $$m$$-edge graph $$G$$ and any parameter $$1\leq r\leq O(\log n)$$, computes a $$(\log m)^{r^2}$$-approximation for Minimum Balanced Cut on $$G$$, in time $$O\left ( m^{1+O(1/r)+o(1)}\cdot (\log m)^{O(r^2)}\right )$$. In particular, we obtain a $$(\log m)^{1/\epsilon}$$-approximation in time $$m^{1+O(1/\sqrt{\epsilon})}$$ for any constant $$\epsilon$$, and a $$(\log m)^{f(m)}$$-approximation in time $$m^{1+o(1)}$$, for any slowly growing function $$m$$. We obtain deterministic algorithms with similar guarantees for the Sparsest Cut and the Lowest-Conductance Cut problems. Our algorithm for the Minimum Balanced Cut problem in fact provides a stronger guarantee: it either returns a balanced cut whose value is close to a given target value, or it certifies that such a cut does not exist by exhibiting a large subgraph of $$G$$ that has high conductance. We use this algorithm to obtain deterministic algorithms for dynamic connectivity and minimum spanning forest, whose worst-case update time on an $$n$$-vertex graph is $$n^{o(1)}$$, thus resolving a major open problem in the area of dynamic graph algorithms. Our work also implies deterministic algorithms for a host of additional problems, whose time complexities match, up to subpolynomial in $$n$$ factors, those of known randomized algorithms. The implications include almost-linear time deterministic algorithms for solving Laplacian systems and for approximating maximum flows in undirected graphs.
Chekuri, Chandra; Christiansen, Aleksander Bjørn; Holm, Jacob; van der Hoog, Ivor; Quanrud, Kent; Rotenberg, Eva; Schwiegelshohn, Chris.
(, Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January 7-10, 2024)
Woodruff, David P.
(Ed.)
We give improved algorithms for maintaining edge-orientations of a fully-dynamic graph, such that the maximum out-degree is bounded. On one hand, we show how to orient the edges such that maximum out-degree is proportional to the arboricity $$\alpha$$ of the graph, in, either, an amortised update time of $$O(\log^2 n \log \alpha)$$, or a worst-case update time of $$O(\log^3 n \log \alpha)$$. On the other hand, motivated by applications including dynamic maximal matching, we obtain a different trade-off. Namely, the improved update time of either $$O(\log n \log \alpha)$$, amortised, or $$O(\log ^2 n \log \alpha)$$, worst-case, for the problem of maintaining an edge-orientation with at most $$O(\alpha + \log n)$$ out-edges per vertex. Finally, all of our algorithms naturally limit the recourse to be polylogarithmic in $$n$$ and $$\alpha$$. Our algorithms adapt to the current arboricity of the graph, and yield improvements over previous work: Firstly, we obtain deterministic algorithms for maintaining a $$(1+\varepsilon)$$ approximation of the maximum subgraph density, $$\rho$$, of the dynamic graph. Our algorithms have update times of $$O(\varepsilon^{-6}\log^3 n \log \rho)$$ worst-case, and $$O(\varepsilon^{-4}\log^2 n \log \rho)$$ amortised, respectively. We may output a subgraph $$H$$ of the input graph where its density is a $$(1+\varepsilon)$$ approximation of the maximum subgraph density in time linear in the size of the subgraph. These algorithms have improved update time compared to the $$O(\varepsilon^{-6}\log ^4 n)$$ algorithm by Sawlani and Wang from STOC 2020. Secondly, we obtain an $$O(\varepsilon^{-6}\log^3 n \log \alpha)$$ worst-case update time algorithm for maintaining a $$(1~+~\varepsilon)\textnormal{OPT} + 2$$ approximation of the optimal out-orientation of a graph with adaptive arboricity $$\alpha$$, improving the $$O(\varepsilon^{-6}\alpha^2 \log^3 n)$$ algorithm by Christiansen and Rotenberg from ICALP 2022. This yields the first worst-case polylogarithmic dynamic algorithm for decomposing into $$O(\alpha)$$ forests. Thirdly, we obtain arboricity-adaptive fully-dynamic deterministic algorithms for a variety of problems including maximal matching, $$\Delta+1$$ colouring, and matrix vector multiplication. All update times are worst-case $$O(\alpha+\log^2n \log \alpha)$$, where $$\alpha$$ is the current arboricity of the graph. For the maximal matching problem, the state-of-the-art deterministic algorithms by Kopelowitz, Krauthgamer, Porat, and Solomon from ICALP 2014 runs in time $$O(\alpha^2 + \log^2 n)$$, and by Neiman and Solomon from STOC 2013 runs in time $$O(\sqrt{m})$$. We give improved running times whenever the arboricity $$\alpha \in \omega( \log n\sqrt{\log\log n})$$.
@article{osti_10435098,
place = {Country unknown/Code not available},
title = {Fully Dynamic Connectivity in $O(\log n(\log\log n)^2)$ Amortized Expected Time},
url = {https://par.nsf.gov/biblio/10435098},
DOI = {10.46298/theoretics.23.6},
abstractNote = {Dynamic connectivity is one of the most fundamental problems in dynamic graphalgorithms. We present a randomized Las Vegas dynamic connectivity datastructure with $O(\log n(\log\log n)^2)$ amortized expected update time and$O(\log n/\log\log\log n)$ worst case query time, which comes very close to thecell probe lower bounds of Patrascu and Demaine (2006) and Patrascu and Thorup(2011).},
journal = {TheoretiCS},
volume = {Volume 2},
author = {Huang, Shang-En and Huang, Dawei and Kopelowitz, Tsvi and Pettie, Seth and Thorup, Mikkel},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.