Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Meka, Raghu (Ed.)In the d-dimensional turnstile streaming model, a frequency vector 𝐱 = (𝐱(1),…,𝐱(n)) ∈ (ℝ^d)ⁿ is updated entry-wisely over a stream. We consider the problem of f-moment estimation for which one wants to estimate f(𝐱)=∑_{v ∈ [n]}f(𝐱(v)) with a small-space sketch. A function f is tractable if the f-moment can be estimated to within a constant factor using polylog(n) space. The f-moment estimation problem has been intensively studied in the d = 1 case. Flajolet and Martin estimate the F₀-moment (f(x) = 1 (x > 0), incremental stream); Alon, Matias, and Szegedy estimate the L₂-moment (f(x) = x²); Indyk estimates the L_α-moment (f(x) = |x|^α), α ∈ (0,2]. For d ≥ 2, Ganguly, Bansal, and Dube estimate the L_{p,q} hybrid moment (f:ℝ^d → ℝ,f(x) = (∑_{j = 1}^d |x_j|^p)^q), p ∈ (0,2],q ∈ (0,1). For tractability, Bar-Yossef, Jayram, Kumar, and Sivakumar show that f(x) = |x|^α is not tractable for α > 2. Braverman, Chestnut, Woodruff, and Yang characterize the class of tractable one-variable functions except for a class of nearly periodic functions. In this work we present a simple and generic scheme to construct sketches with the novel idea of hashing indices to Lévy processes, from which one can estimate the f-moment f(𝐱) where f is the characteristic exponent of the Lévy process. The fundamental Lévy-Khintchine representation theorem completely characterizes the space of all possible characteristic exponents, which in turn characterizes the set of f-moments that can be estimated by this generic scheme. The new scheme has strong explanatory power. It unifies the construction of many existing sketches (F₀, L₀, L₂, L_α, L_{p,q}, etc.) and it implies the tractability of many nearly periodic functions that were previously unclassified. Furthermore, the scheme can be conveniently generalized to multidimensional cases (d ≥ 2) by considering multidimensional Lévy processes and can be further generalized to estimate heterogeneous moments by projecting different indices with different Lévy processes. We conjecture that the set of tractable functions can be characterized using the Lévy-Khintchine representation theorem via what we called the Fourier-Hahn-Lévy method.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Since the mid-1980s it has been known that Byzantine Agreement can be solved with probability 1 asynchronously, even against an omniscient, computationally unbounded adversary that can adaptivelycorruptup tof < n/3parties. Moreover, the problem is insoluble withf ≥ n/3corruptions. However, Bracha’s [13] 1984 protocol (see also Ben-Or [8]) achievedf < n/3resilience at the cost ofexponentialexpected latency2Θ (n), a bound that hasneverbeen improved in this model withf = ⌊ (n-1)/3 ⌋corruptions. In this article, we prove that Byzantine Agreement in the asynchronous, full information model can be solved with probability 1 against an adaptive adversary that can corruptf < n/3parties, while incurring onlypolynomial latency with high probability. Our protocol follows an earlier polynomial latency protocol of King and Saia [33,34], which hadsuboptimalresilience, namelyf ≈ n/109 [33,34]. Resiliencef = (n-1)/3is uniquely difficult, as this is the point at which the influence of the Byzantine and honest players are of roughly equal strength. The core technical problem we solve is to design a collective coin-flipping protocol thateventuallylets us flip a coin with an unambiguous outcome. In the beginning, the influence of the Byzantine players is too powerful to overcome, and they can essentially fix the coin’s behavior at will. We guarantee that after just a polynomial number of executions of the coin-flipping protocol, either (a) the Byzantine players fail to fix the behavior of the coin (thereby ending the game) or (b) we can “blacklist” players such that the blacklisting rate for Byzantine players is at least as large as the blacklisting rate for good players. The blacklisting criterion is based on a simple statistical test offraud detection.more » « less
- 
            Guruswami, Venkatesan (Ed.)Traditional fraud detection is often based on finding statistical anomalies in data sets and transaction histories. A sophisticated fraudster, aware of the exact kinds of tests being deployed, might be difficult or impossible to catch. We are interested in paradigms for fraud detection that are provably robust against any adversary, no matter how sophisticated. In other words, the detection strategy should rely on signals in the data that are inherent in the goals the adversary is trying to achieve. Specifically, we consider a fraud detection game centered on a random walk on a graph. We assume this random walk is implemented by having a player at each vertex, who can be honest or not. In particular, when the random walk reaches a vertex owned by an honest player, it proceeds to a uniformly random neighbor at the next timestep. However, when the random walk reaches a dishonest player, it instead proceeds to an arbitrary neighbor chosen by an omniscient Adversary. The game is played between the Adversary and a Referee who sees the trajectory of the random walk. At any point during the random walk, if the Referee determines that a {specific} vertex is controlled by a dishonest player, the Referee accuses that player, and therefore wins the game. The Referee is allowed to make the occasional incorrect accusation, but must follow a policy that makes such mistakes with small probability of error. The goal of the adversary is to make the cover time large, ideally infinite, i.e., the walk should never reach at least one vertex. We consider the following basic question: how much can the omniscient Adversary delay the cover time without getting caught? Our main result is a tight upper bound on this delay factor. We also discuss possible applications of our results to settings such as Rotor Walks, Leader Election, and Sybil Defense.more » « less
- 
            Dynamic connectivity is one of the most fundamental problems in dynamic graphalgorithms. We present a randomized Las Vegas dynamic connectivity datastructure with $$O(\log n(\log\log n)^2)$$ amortized expected update time and$$O(\log n/\log\log\log n)$$ worst case query time, which comes very close to thecell probe lower bounds of Patrascu and Demaine (2006) and Patrascu and Thorup(2011).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available