skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recovering a hidden community beyond the Kesten–Stigum threshold in O(|E|log*|V|) time
Abstract Community detection is considered for a stochastic block model graph of n vertices, with K vertices in the planted community, edge probability p for pairs of vertices both in the community, and edge probability q for other pairs of vertices. The main focus of the paper is on weak recovery of the community based on the graph G , with o ( K ) misclassified vertices on average, in the sublinear regime n 1- o (1) ≤ K ≤ o ( n ). A critical parameter is the effective signal-to-noise ratio λ = K 2 ( p - q ) 2 / (( n - K ) q ), with λ = 1 corresponding to the Kesten–Stigum threshold. We show that a belief propagation (BP) algorithm achieves weak recovery if λ > 1 / e, beyond the Kesten–Stigum threshold by a factor of 1 / e. The BP algorithm only needs to run for log * n + O (1) iterations, with the total time complexity O (| E |log * n ), where log * n is the iterated logarithm of n . Conversely, if λ ≤ 1 / e, no local algorithm can asymptotically outperform trivial random guessing. Furthermore, a linear message-passing algorithm that corresponds to applying a power iteration to the nonbacktracking matrix of the graph is shown to attain weak recovery if and only if λ > 1. In addition, the BP algorithm can be combined with a linear-time voting procedure to achieve the information limit of exact recovery (correctly classify all vertices with high probability) for all K ≥ ( n / log n ) (ρ BP + o (1)), where ρ BP is a function of p / q .  more » « less
Award ID(s):
1651588
PAR ID:
10089330
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Applied Probability
Volume:
55
Issue:
02
ISSN:
0021-9002
Page Range / eLocation ID:
325 to 352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We consider a variant of the planted clique problem where we are allowed unbounded computational time but can only investigate a small part of the graph by adaptive edge queries. We determine (up to logarithmic factors) the number of queries necessary both for detecting the presence of a planted clique and for finding the planted clique. Specifically, let $$G \sim G(n,1/2,k)$$ be a random graph on $$n$$ vertices with a planted clique of size $$k$$. We show that no algorithm that makes at most $q = o(n^2 / k^2 + n)$ adaptive queries to the adjacency matrix of $$G$$ is likely to find the planted clique. On the other hand, when $$k \geq (2+\epsilon) \log_2 n$$ there exists a simple algorithm (with unbounded computational power) that finds the planted clique with high probability by making $$q = O( (n^2 / k^2) \log^2 n + n \log n)$$ adaptive queries. For detection, the additive $$n$$ term is not necessary: the number of queries needed to detect the presence of a planted clique is $n^2 / k^2$ (up to logarithmic factors). 
    more » « less
  2. null (Ed.)
    Given a weighted planar bipartite graph G ( A ∪ B , E ) where each edge has an integer edge cost, we give an Õ( n 4/3 log nC ) time algorithm to compute minimum-cost perfect matching; here C is the maximum edge cost in the graph. The previous best-known planarity exploiting algorithm has a running time of O ( n 3/2 log n ) and is achieved by using planar separators (Lipton and Tarjan ’80). Our algorithm is based on the bit-scaling paradigm (Gabow and Tarjan ’89). For each scale, our algorithm first executes O ( n 1/3 ) iterations of Gabow and Tarjan’s algorithm in O ( n 4/3 ) time leaving only O ( n 2/3 ) vertices unmatched. Next, it constructs a compressed residual graph H with O ( n 2/3 ) vertices and O ( n ) edges. This is achieved by using an r -division of the planar graph G with r = n 2/3 . For each partition of the r -division, there is an edge between two vertices of H if and only if they are connected by a directed path inside the partition. Using existing efficient shortest-path data structures, the remaining O ( n 2/3 ) vertices are matched by iteratively computing a minimum-cost augmenting path, each taking Õ( n 2/3 ) time. Augmentation changes the residual graph, so the algorithm updates the compressed representation for each partition affected by the change in Õ( n 2/3 ) time. We bound the total number of affected partitions over all the augmenting paths by O ( n 2/3 log n ). Therefore, the total time taken by the algorithm is Õ( n 4/3 ). 
    more » « less
  3. Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz (Ed.)
    We give the first almost-linear time algorithm for computing the maximal k-edge-connected subgraphs of an undirected unweighted graph for any constant k. More specifically, given an n-vertex m-edge graph G = (V,E) and a number k = log^o(1) n, we can deterministically compute in O(m+n^{1+o(1)}) time the unique vertex partition {V_1,… ,V_z} such that, for every i, V_i induces a k-edge-connected subgraph while every superset V'_i ⊃ V_{i} does not. Previous algorithms with linear time work only when k ≤ 2 [Tarjan SICOMP'72], otherwise they all require Ω(m+n√n) time even when k = 3 [Chechik et al. SODA'17; Forster et al. SODA'20]. Our algorithm also extends to the decremental graph setting; we can deterministically maintain the maximal k-edge-connected subgraphs of a graph undergoing edge deletions in m^{1+o(1)} total update time. Our key idea is a reduction to the dynamic algorithm supporting pairwise k-edge-connectivity queries [Jin and Sun FOCS'20]. 
    more » « less
  4. We present a sublinear time algorithm that allows one to sample multiple edges from a distribution that is pointwise ϵ-close to the uniform distribution, in an amortized-efficient fashion. We consider the adjacency list query model, where access to a graph G is given via degree and neighbor queries. The problem of sampling a single edge in this model has been raised by Eden and Rosenbaum (SOSA 18). Let n and m denote the number of vertices and edges of G, respectively. Eden and Rosenbaum provided upper and lower bounds of Θ∗(n/ √ m) for sampling a single edge in general graphs (where O ∗(·) suppresses poly(1/ϵ) and poly(log n) dependencies). We ask whether the query complexity lower bound for sampling a single edge can be circumvented when multiple samples are required. That is, can we get an improved amortized per-sample cost if we allow a preprocessing phase? We answer in the affirmative. We present an algorithm that, if one knows the number of required samples q in advance, has an overall cost that is sublinear in q, namely, O∗(√ q · (n/ √ m)), which is strictly preferable to O∗(q · (n/ √ m)) cost resulting from q invocations of the algorithm by Eden and Rosenbaum. Subsequent to a preliminary version of this work, Tětek and Thorup (arXiv, preprint) proved that this bound is essentially optimal. 
    more » « less
  5. We present a sublinear time algorithm that allows one to sample multiple edges from a distribution that is pointwise ε-close to the uniform distribution, in an amortized-efficient fashion. We consider the adjacency list query model, where access to a graph G is given via degree and neighbor queries. The problem of sampling a single edge in this model has been raised by Eden and Rosenbaum (SOSA 18). Let n and m denote the number of vertices and edges of G, respectively. Eden and Rosenbaum provided upper and lower bounds of Θ^*(n/√ m) for sampling a single edge in general graphs (where O^*(⋅) suppresses poly(1/ε) and poly(log n) dependencies). We ask whether the query complexity lower bound for sampling a single edge can be circumvented when multiple samples are required. That is, can we get an improved amortized per-sample cost if we allow a preprocessing phase? We answer in the affirmative. We present an algorithm that, if one knows the number of required samples q in advance, has an overall cost that is sublinear in q, namely, O^*(√ q ⋅(n/√ m)), which is strictly preferable to O^*(q⋅ (n/√ m)) cost resulting from q invocations of the algorithm by Eden and Rosenbaum. Subsequent to a preliminary version of this work, Tětek and Thorup (arXiv, preprint) proved that this bound is essentially optimal. 
    more » « less