skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Artificial Intelligence-Enabled Exploratory Cyber-Physical Safety Analyzer Framework for Civilian Urban Air Mobility
Urban air mobility (UAM) has become a potential candidate for civilization for serving smart citizens, such as through delivery, surveillance, and air taxis. However, safety concerns have grown since commercial UAM uses a publicly available communication infrastructure that enhances the risk of jamming and spoofing attacks to steal or crash crafts in UAM. To protect commercial UAM from cyberattacks and theft, this work proposes an artificial intelligence (AI)-enabled exploratory cyber-physical safety analyzer framework. The proposed framework devises supervised learning-based AI schemes such as decision tree, random forests, logistic regression, K-nearest neighbors (KNN), and long short-term memory (LSTM) for predicting and detecting cyber jamming and spoofing attacks. Then, the developed framework analyzes the conditional dependencies based on the Pearson’s correlation coefficient among the control messages for finding the cause of potential attacks based on the outcome of the AI algorithm. This work considers the UAM attitude control scenario for determining jam and spoofing attacks as a use case to validate the proposed framework with a state-of-the-art UAV attack dataset. The experiment results show the efficacy of the proposed framework in terms of around 99.9% accuracy for jamming and spoofing detection with a decision tree, random forests, and KNN while efficiently finding the root cause of the attack.  more » « less
Award ID(s):
2205773
PAR ID:
10435137
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
13
Issue:
2
ISSN:
2076-3417
Page Range / eLocation ID:
755
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Connected vehicle (CV) technology brings both opportunities and challenges to the traffic signal control (TSC) system. While safety and mobility performance could be greatly improved by adopting CV technologies, the connectivity between vehicles and transportation infrastructure may increase the risks of cyber threats. In the past few years, studies related to cybersecurity on the TSC systems were conducted. However, there still lacks a systematic investigation that provides a comprehensive analysis framework. In this study, our aim is to fill the research gap by proposing a comprehensive analysis framework for the cybersecurity problem of the TSC in the CV environment. With potential threats towards the major components of the system and their corresponding impacts on safety and efficiency analyzed, data spoofing attack is considered the most plausible and realistic attack approach. Based on this finding, different attack strategies and defense solutions are discussed. A case study is presented to show the impact of the data spoofing attacks towards a selected CV based TSC system and corresponding mitigation countermeasures. This case study is conducted on a hybrid security testing platform, with virtual traffic and a real V2X communication network. To the best of our knowledge, this is the first study to present a comprehensive analysis framework to the cybersecurity problem of the CV-based TSC systems. 
    more » « less
  2. The adoption of digital technology in industrial control systems (ICS) enables improved control over operation, ease of system diagnostics and reduction in cost of maintenance of cyber physical systems (CPS). However, digital systems expose CPS to cyber-attacks. The problem is grave since these cyber-attacks can lead to cascading failures affecting safety in CPS. Unfortunately, the relationship between safety events and cyber-attacks in ICS is ill-understood and how cyber-attacks can lead to cascading failures affecting safety. Consequently, CPS operators are ill-prepared to handle cyber-attacks on their systems. In this work, we envision adopting Explainable AI to assist CPS oper-ators in analyzing how a cyber-attack can trigger safety events in CPS and then interactively determining potential approaches to mitigate those threats. We outline the design of a formal framework, which is based on the notion of transition systems, and the associated toolsets for this purpose. The transition system is represented as an AI Planning problem and adopts the causal formalism of human reasoning to asssit CPS operators in their analyses. We discuss some of the research challenges that need to be addressed to bring this vision to fruition. 
    more » « less
  3. Cyber-Physical Systems (CPS) have been increasingly subject to cyber-attacks including code injection attacks. Zero day attacks further exasperate the threat landscape by requiring a shift to defense in depth approaches. With the tightly coupled nature of cyber components with the physical domain, these attacks have the potential to cause significant damage if safety-critical applications such as automobiles are compromised. Moving target defense techniques such as instruction set randomization (ISR) have been commonly proposed to address these types of attacks. However, under current implementations an attack can result in system crashing which is unacceptable in CPS. As such, CPS necessitate proper control reconfiguration mechanisms to prevent a loss of availability in system operation. This paper addresses the problem of maintaining system and security properties of a CPS under attack by integrating ISR, detection, and recovery capabilities that ensure safe, reliable, and predictable system operation. Specifically, we consider the problem of detecting code injection attacks and reconfiguring the controller in real-time. The developed framework is demonstrated with an autonomous vehicle case study. 
    more » « less
  4. We propose a novel framework for modeling attack scenarios in cyber-physical control systems: we represent a cyber-physical system as a constrained switching system, where a single model embeds the dynamics of the physical process, the attack patterns, and the attack detection schemes. We show that this is compatible with established results in hybrid automata, namely, constrained switching systems. The proposed attack modeling approach admits a large class of non-deterministic attack policies and permits the characterization of system safety as an asymptotic property. By calculating the maximal safe set, the resulting new impact metrics intuitively quantify the degradation of safety and the impact of cyber attacks on the safety properties of the system under attack. We showcase our results via an illustrative example. 
    more » « less
  5. null (Ed.)
    Unmanned aerial vehicles (UAVs) suffer from sensor drifts in GPS denied environments, which can lead to potentially dangerous situations. To avoid intolerable sensor drifts in the presence of GPS spoofing attacks, we propose a safety constrained control framework that adapts the UAV at a path re-planning level to support resilient state estimation against GPS spoofing attacks. The attack detector is used to detect GPS spoofing attacks and provides a switching criterion between the robust control mode and emergency control mode. An attacker location tracker (ALT) is developed to track the attacker's location and estimate the spoofing device's output power by the unscented Kalman filter (UKF) with sliding window outputs. Using the estimates from ALT, we design an escape controller (ESC) based on the model predictive controller (MPC) such that the UAV escapes from the effective range of the spoofing device within the escape time. 
    more » « less