skip to main content


This content will become publicly available on May 10, 2024

Title: Thermal Estimation for 3D-ICs Through Generative Networks
Thermal limitations play a significant role in modern integrated chips (ICs) design and performance. 3D integrated chip (3DIC) makes the thermal problem even worse due to a high density of transistors and heat dissipation bottlenecks within the stack-up. These issues exacerbate the need for quick thermal solutions throughout the design flow. This paper presents a generative approach for modeling the power to heat dissipation for a 3DIC. This approach focuses on a single layer in a stack and shows that, given the power map, the model can generate the resultant heat for the bulk. It shows two approaches, one straightforward approach where the model only uses the power map and the other where it learns the additional parameters through random vectors. The first approach recovers the temperature maps with 1.2 C° or a root-mean-squared error (RMSE) of 0.31 over the images with pixel values ranging from -1 to 1. The second approach performs better, with the RMSE decreasing to 0.082 in a 0 to 1 range. For any result, the model inference takes less than 100 millisecond for any given power map. These results show that the generative approach has speed advantages over traditional solvers while enabling results with reasonable accuracy for 3DIC, opening the door for thermally aware floorplanning.  more » « less
Award ID(s):
1624770 2137288 2137283 2137259 2345055
NSF-PAR ID:
10435239
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2023 IEEE International 3D Systems Integration Conference (3DIC)
Issue:
2023
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we propose a novel approach for the real-time estimation of chip-level spatial power maps for commercial Google Coral M.2 TPU chips based on a machine-learning technique for the first time. The new method can enable the development of more robust runtime power and thermal control schemes to take advantage of spatial power information such as hot spots that are otherwise not available. Different from the existing commercial multi-core processors in which real-time performance-related utilization information is available, the TPU from Google does not have such information. To mitigate this problem, we propose to use features that are related to the workloads of running different deep neural networks (DNN) such as the hyperparameters of DNN and TPU resource information generated by the TPU compiler. The new approach involves the offline acquisition of accurate spatial and temporal temperature maps captured from an external infrared thermal imaging camera under nominal working conditions of a chip. To build the dynamic power density map model, we apply generative adversarial networks (GAN) based on the workload-related features. Our study shows that the estimated total powers match the manufacturer's total power measurements extremely well. Experimental results further show that the predictions of power maps are quite accurate, with the RMSE of only 4.98\rm mW/mm^2, or 2.6\% of the full-scale error. The speed of deploying the proposed approach on an Intel Core i7-10710U is as fast as 6.9ms, which is suitable for real-time estimation. 
    more » « less
  2. In this paper, we propose a novel transient full-chip thermal map estimation method for multi-core commercial CPU based on the data-driven generative adversarial learning method. We treat the thermal modeling problem as an image-generation problem using the generative neural networks. In stead of using traditional functional unit powers as input, the new models are directly based on the measurable real-time high level chip utilizations and thermal sensor information of commercial chips without any assumption of additional physical sensors requirement. The resulting thermal map estimation method, called {\it ThermGAN} can provide tool-accurate full-chip {\it transient} thermal maps from the given performance monitor traces of commercial off-the-shelf multi-core processors. In our work, both generator and discriminator are composed of simple convolutional layers with Wasserstein distance as loss function. ThermGAN can provide the transient and real-time thermal map without using any historical data for training and inferences, which is contrast with a recent RNN-based thermal map estimation method in which historical data is needed. Experimental results show the trained model is very accurate in thermal estimation with an average RMSE of 0.47C, namely, 0.63\% of the full-scale error. Our data further show that the speed of the model is faster than 7.5ms per inference, which is two orders of magnitude faster than the traditional finite element based thermal analysis. Furthermore, the new method is about 4x more accurate than recently proposed LSTM-based thermal map estimation method and has faster inference speed. It also achieves about 2x accuracy with much less computational cost than a state-of-the-art pre-silicon based estimation method. 
    more » « less
  3. Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at  = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K. The spectral peaks for VB = 2.8 and 3.0 V both occur around  = 1550 nm (h = 0.75 eV), so blue-shifted relative to the peak of the “ideal”, bulk InGaAs emission spectrum shown in Fig. 1(b) [5]. These results are consistent with the model displayed in Fig. 1(c), whereby the broad emission peak is attributed to the radiative recombination between electrons accumulated on the emitter side, and holes generated on the emitter side by interband tunneling with current density Jinter. The blue-shifted main peak is attributed to the quantum-size effect on the emitter side, which creates a radiative recombination rate RN,2 comparable to the band-edge cross-gap rate RN,1. Further support for this model is provided by the shorter wavelength and weaker emission peak shown in Fig. 1(b) around = 1148 nm. Our quantum mechanical calculations attribute this to radiative recombination RR,3 in the RTD quantum well between the electron ground-state level E1,e, and the hole level E1,h. To further test the model and estimate quantum efficiencies, we conducted optical power measurements using a large-area Ge photodiode located ≈3 mm away from the RTD pinhole, and having spectral response between 800 and 1800 nm with a peak responsivity of ≈0.85 A/W at  =1550 nm. Simultaneous I-V and L-V plots were obtained and are plotted in Fig. 2(a) with positive bias on the top contact (emitter on the bottom). The I-V curve displays a pronounced NDR region having a current peak-to-valley current ratio of 10.7 (typical for In0.53Ga0.47As RTDs). The external quantum efficiency (EQE) was calculated from EQE = e∙IP/(∙IE∙h) where IP is the photodiode dc current and IE the RTD current. The plot of EQE is shown in Fig. 2(b) where we see a very rapid rise with VB, but a maximum value (at VB= 3.0 V) of only ≈2×10-5. To extract the internal quantum efficiency (IQE), we use the expression EQE= c ∙i ∙r ≡ c∙IQE where ci, and r are the optical-coupling, electrical-injection, and radiative recombination efficiencies, respectively [6]. Our separate optical calculations yield c≈3.4×10-4 (limited primarily by the small pinhole) from which we obtain the curve of IQE plotted in Fig. 2(b) (right-hand scale). The maximum value of IQE (again at VB = 3.0 V) is 6.0%. From the implicit definition of IQE in terms of i and r given above, and the fact that the recombination efficiency in In0.53Ga0.47As is likely limited by Auger scattering, this result for IQE suggests that i might be significantly high. To estimate i, we have used the experimental total current of Fig. 2(a), the Kane two-band model of interband tunneling [7] computed in conjunction with a solution to Poisson’s equation across the entire structure, and a rate-equation model of Auger recombination on the emitter side [6] assuming a free-electron density of 2×1018 cm3. We focus on the high-bias regime above VB = 2.5 V of Fig. 2(a) where most of the interband tunneling should occur in the depletion region on the collector side [Jinter,2 in Fig. 1(c)]. And because of the high-quality of the InGaAs/AlAs heterostructure (very few traps or deep levels), most of the holes should reach the emitter side by some combination of drift, diffusion, and tunneling through the valence-band double barriers (Type-I offset) between InGaAs and AlAs. The computed interband current density Jinter is shown in Fig. 3(a) along with the total current density Jtot. At the maximum Jinter (at VB=3.0 V) of 7.4×102 A/cm2, we get i = Jinter/Jtot = 0.18, which is surprisingly high considering there is no p-type doping in the device. When combined with the Auger-limited r of 0.41 and c ≈ 3.4×10-4, we find a model value of IQE = 7.4% in good agreement with experiment. This leads to the model values for EQE plotted in Fig. 2(b) - also in good agreement with experiment. Finally, we address the high Jinter and consider a possible universal nature of the light-emission mechanism. Fig. 3(b) shows the tunneling probability T according to the Kane two-band model in the three materials, In0.53Ga0.47As, GaAs, and GaN, following our observation of a similar electroluminescence mechanism in GaN/AlN RTDs (due to strong polarization field of wurtzite structures) [8]. The expression is Tinter = (2/9)∙exp[(-2 ∙Ug 2 ∙me)/(2h∙P∙E)], where Ug is the bandgap energy, P is the valence-to-conduction-band momentum matrix element, and E is the electric field. Values for the highest calculated internal E fields for the InGaAs and GaN are also shown, indicating that Tinter in those structures approaches values of ~10-5. As shown, a GaAs RTD would require an internal field of ~6×105 V/cm, which is rarely realized in standard GaAs RTDs, perhaps explaining why there have been few if any reports of room-temperature electroluminescence in the GaAs devices. [1] E.R. Brown,et al., Appl. Phys. Lett., vol. 58, 2291, 1991. [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [2] M. Feiginov et al., Appl. Phys. Lett., 99, 233506, 2011. [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [3] Y. Nishida et al., Nature Sci. Reports, 9, 18125, 2019. [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [4] P. Fakhimi, et al., 2019 DRC Conference Digest. [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). 
    more » « less
  4. Abstract

    Heat dissipation is a major limitation of high‐performance electronics. This is especially important in emerging nanoelectronic devices consisting of ultra‐thin layers, heterostructures, and interfaces, where enhancement in thermal transport is highly desired. Here, ultra‐high interfacial thermal conductance in encapsulated van der Waals (vdW) heterostructures with single‐layer transition metal dichalcogenides MX2(MoS2, WSe2, WS2) sandwiched between two hexagonal boron nitride (hBN) layers is reported. Through Raman spectroscopic measurements of suspended and substrate‐supported hBN/MX2/hBN heterostructures with varying laser power and temperature, the out‐of‐plane interfacial thermal conductance in the vertical stack is calibrated. The measured interfacial thermal conductance between MX2and hBN reaches 74 ± 25 MW m−2K−1, which is at least ten times higher than the interfacial thermal conductance of MX2in non‐encapsulation structures. Molecular dynamics (MD) calculations verify and explain the experimental results, suggesting a full encapsulation by hBN layers is accounting for the high interfacial conductance. This ultra‐high interfacial thermal conductance is attributed to the double heat transfer pathways and the clean and tight vdW interface between two crystalline 2D materials. The findings in this study reveal new thermal transport mechanisms in hBN/MX2/hBN structures and shed light on building novel hBN‐encapsulated nanoelectronic devices with enhanced thermal management.

     
    more » « less
  5. Experiments are conducted to understand atmospheric spark ignition process in more detail. The research done relates the electrical energy dissipated across the spark gap to the measured schlieren ignition volume. The result is the supplied electrical thermal energy. The study provides insight into the structure of plasma and the mechanisms which convert electrical power into heat. The research is done to support laminar burning speed calculations to increase accuracy and extend diagnostic techniques to conditions otherwise immeasurable. Typically, plasma measurements are taken via a Langmuir probe. However, for the automotive ignition plasma, this measurement technique is challenging because of the transient nature, high pressure, and temperatures involved. Therefore, several alternative techniques will be used in order to find the potential distribution of the plasma and unveil the structure of the plasma more specifically the cathode fall. Three different voltage measurements are taken in order to capture the cathode fall of the plasma. One method simply measures the potential using a high voltage probe. This method may be inaccurate because of the presence of charged ions, however, these results are compared to non-intrusive measurements where voltage data is extrapolated over various gaps sizes to zero length. It is generally agreed that the desired measurement for this work, the cathode fall, remain constant and depends on the composition of the gas and the electrode. Therefore, changing the system input power and the gap will only change the voltage drop across the bulk plasma. The linear change in voltage potential through variation of testing parameters like gap length can then be extrapolated to zero length of the bulk plasma or minimum energy value which should be equal the value of cathode fall and bulk plasma potential respectively. It was found that after excluding systemic losses such as electrical resistance and ignition coil inefficiencies, the primary loss within the plasma gap is the potential drop across the cathode sheath. Excluding the loss in the cathode fall results in a measured electrical data that is responsible for thermal discharge. In order to highlight the findings, electrical discharge energy is compared to the volume of the heated gas kernel in atmospheric air. Removal of the cathode fall data will show that the energy is proportional to the volume of heated gas whereas, before the change in energy dissipation between glow and arc plasmas prevented this relationship from being visible. The data and methods discussed in this research provides the means to determine the thermal energy of ignitions and sparks even when the spark is inaccessible or obscured. Further work will be done utilizing the power measurement found in this work in a model to predict the affected thermal spark volume. It is also proposed that further validation of the proposed measured electrical thermal energy should be compared to the energy measured with a calorimeter to determine any other inefficiencies in the plasma discharge process. Additionally, the experimentation done observes the cathode fall of only glow plasma, Additional work should be done to find the cathode fall of arc plasma. 
    more » « less