Machine learning (ML)-based techniques for electronic design automation (EDA) have boosted the performance of modern integrated circuits (ICs). Such achievement makes ML model to be of importance for the EDA industry. In addition, ML models for EDA are widely considered having high development cost because of the time-consuming and complicated training data generation process. Thus, confidentiality protection for EDA models is a critical issue. However, an adversary could apply model extraction attacks to steal the model in the sense of achieving the comparable performance to the victim's model. As model extraction attacks have posed great threats to other application domains, e.g., computer vision and natural language process, in this paper, we study model extraction attacks for EDA models under two real-world scenarios. It is the first work that (1) introduces model extraction attacks on EDA models and (2) proposes two attack methods against the unlimited and limited query budget scenarios. Our results show that our approach can achieve competitive performance with the well-trained victim model without any performance degradation. Based on the results, we demonstrate that model extraction attacks truly threaten the EDA model privacy and hope to raise concerns about ML security issues in EDA.
more »
« less
Towards collaborative intelligence: routability estimation based on decentralized private data
Applying machine learning (ML) in design flow is a popular trend in Electronic Design Automation (EDA) with various applications from design quality predictions to optimizations. Despite its promise, which has been demonstrated in both academic researches and industrial tools, its effectiveness largely hinges on the availability of a large amount of high-quality training data. In reality, EDA developers have very limited access to the latest design data, which is owned by design companies and mostly confidential. Although one can commission ML model training to a design company, the data of a single company might be still inadequate or biased, especially for small companies. Such data availability problem is becoming the limiting constraint on future growth of ML for chip design. In this work, we propose an Federated-Learning based approach for well-studied ML applications in EDA. Our approach allows an ML model to be collaboratively trained with data from multiple clients but without explicit access to the data for respecting their data privacy. To further strengthen the results, we co-design a customized ML model FLNet and its personalization under the decentralized training scenario. Experiments on a comprehensive dataset show that collaborative training improves accuracy by 11% compared with individual local models, and our customized model FLNet significantly outperforms the best of previous routability estimators in this collaborative training flow.
more »
« less
- Award ID(s):
- 2106828
- PAR ID:
- 10435266
- Date Published:
- Journal Name:
- The 59th ACM/IEEE Design Automation Conference
- Page Range / eLocation ID:
- 961 to 966
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mills, Caitlin; Alexandron, Giora; Taibi, Davide; Lo_Bosco, Giosuè; Paquette, Luc (Ed.)Social interactions among classroom peers, represented as social learning networks (SLNs), play a crucial role in enhancing learning outcomes. While SLN analysis has recently garnered attention, most existing approaches rely on centralized training, where data is aggregated and processed on a local/cloud server with direct access to raw data. However, in real-world educational settings, such direct access across multiple classrooms is often restricted due to privacy concerns. Furthermore, training models on isolated classroom data prevents the identification of common interaction patterns that exist across multiple classrooms, thereby limiting model performance. To address these challenges, we propose one of the first frameworks that integrates Federated Learning (FL), a distributed and collaborative machine learning (ML) paradigm, with SLNs derived from students' interactions in multiple classrooms' online forums to predict future link formations (i.e., interactions) among students. By leveraging FL, our approach enables collaborative model training across multiple classrooms while preserving data privacy, as it eliminates the need for raw data centralization. Recognizing that each classroom may exhibit unique student interaction dynamics, we further employ model personalization techniques to adapt the FL model to individual classroom characteristics. Our results demonstrate the effectiveness of our approach in capturing both shared and classroom-specific representations of student interactions in SLNs. Additionally, we utilize explainable AI (XAI) techniques to interpret model predictions, identifying key factors that influence link formation across different classrooms. These insights unveil the drivers of social learning interactions within a privacy-preserving, collaborative, and distributed ML framework—an aspect that has not been explored before.more » « less
-
Social interactions among classroom peers, represented as social learning networks (SLNs), play a crucial role in enhancing learning outcomes. While SLN analysis has recently garnered attention, most existing approaches rely on centralized training, where data is aggregated and processed on a local/cloud server with direct access to raw data. However, in real-world educational settings, such direct access across multiple classrooms is often restricted due to privacy concerns. Furthermore, training models on isolated classroom data prevents the identification of common interaction patterns that exist across multiple classrooms, thereby limiting model performance. To address these challenges, we propose one of the first frameworks that integrates Federated Learning (FL), a distributed and collaborative machine learning (ML) paradigm, with SLNs derived from students' interactions in multiple classrooms’ online forums to predict future link formations (i.e., interactions) among students. By leveraging FL, our approach enables collaborative model training across multiple classrooms while preserving data privacy, as it eliminates the need for raw data centralization. Recognizing that each classroom may exhibit unique student interaction dynamics, we further employ model personalization techniques to adapt the FL model to individual classroom characteristics. Our results demonstrate the effectiveness of our approach in capturing both shared and classroom-specific representations of student interactions in SLNs. Additionally, we utilize explainable AI (XAI) techniques to interpret model predictions, identifying key factors that influence link formation across different classrooms. These insights unveil the drivers of social learning interactions within a privacy-preserving, collaborative, and distributed ML framework—an aspect that has not been explored before.more » « less
-
High quality Machine Learning (ML) models are often considered valuable intellectual property by companies. Model Stealing (MS) attacks allow an adversary with black-box access to a ML model to replicate its functionality by training a clone model using the predictions of the target model for different inputs. However, best available existing MS attacks fail to produce a high-accuracy clone without access to the target dataset or a representative dataset necessary to query the target model. In this paper, we show that preventing access to the target dataset is not an adequate defense to protect a model. We propose MAZE -- a data-free model stealing attack using zeroth-order gradient estimation that produces high-accuracy clones. In contrast to prior works, MAZE uses only synthetic data created using a generative model to perform MS. Our evaluation with four image classification models shows that MAZE provides a normalized clone accuracy in the range of 0.90x to 0.99x, and outperforms even the recent attacks that rely on partial data (JBDA, clone accuracy 0.13x to 0.69x) and on surrogate data (KnockoffNets, clone accuracy 0.52x to 0.97x). We also study an extension of MAZE in the partial-data setting and develop MAZE-PD, which generates synthetic data closer to the target distribution. MAZE-PD further improves the clone accuracy 0.97x to 1.0x) and reduces the query budget required for the attack by 2x-24x.more » « less
-
The rise of machine learning (ML) technology inspires a boom in its applications in electronic design automation (EDA) and helps improve the degree of automation in chip designs. However, manually crafting ML models remains a complex and time-consuming process because it requires extensive human expertise and tremendous engineering efforts to carefully extract features and design model architectures. In this work, we leverage automated ML techniques to automate the ML model development for routability prediction, a well-established technique that can help to guide cell placement toward routable solutions. We present an automated feature selection method to identify suitable features for model inputs. We develop a neural architecture search method to search for high-quality neural architectures without human interference. Our search method supports various operations and highly flexible connections, leading to architectures significantly different from all previous human-crafted models. Our experimental results demonstrate that our automatically generated models clearly outperform multiple representative manually crafted solutions with a superior 9.9% improvement. Moreover, compared with human-crafted models, which easily take weeks or months to develop, our efficient automated machine-learning framework completes the whole model development process in only 1 day.more » « less
An official website of the United States government

