skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extraordinary permittivity characterization of 4H SiC at millimeter-wave frequencies
For millimeter-wave power applications, GaN high-electron mobility transistors (HEMTs) are often grown epitaxially on a high-purity semi-insulating c-axis 4H-SiC substrate. For these anisotropic hexagonal materials, the design and modeling of microstrip and coplanar interconnects require detailed knowledge of both the ordinary permittivity ε⊥ and the extraordinary permittivity εǁ perpendicular and parallel, respectively, to the c-axis. However, conventional dielectric characterization techniques make it difficult to measure εǁ alone or to separate εǁ from ε⊥. As a result, there is little data for εǁ, especially at millimeter-wave frequencies. This work demonstrates techniques for characterizing εǁ of 4H SiC using substrate-integrated waveguides (SIWs) or SIW resonators. The measured εǁ on seven SIWs and eleven resonators from 110 to 170 GHz is within ±1% of 10.2. Because the SIWs and resonators can be fabricated on the same SiC substrate together with HEMTs and other devices, they can be conveniently measured on-wafer for precise material-device correlation. Such permittivity characterization techniques can be extended to other frequencies, materials, and orientations.  more » « less
Award ID(s):
2132329 2117305 2132323
PAR ID:
10435396
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Applied Physics Letters
Volume:
123
Issue:
1
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Currently, lacking suitable test structures, little data exist for the permittivity of hexagonal materials such as GaN and SiC at millimeter-wave frequencies, especially for the extraordinary permittivity ε || as opposed to the ordinary permittivity ε ⊥ . This paper demonstrates for the first time that it is possible to characterize ε || of c-axis 4H SiC using on-wafer measurements of substrate-integrated-waveguide resonators. In fact, measurements on eleven resonators yield a relative ε || of 10.27 ± 0.03 and a loss tangent tanδ<0.02 over the D band (110-170 GHz). The on-wafer measurements of resonators and other devices fabricated on the same SiC substrate can allow material property to be closely correlated with device performance. The present approach can be extended to materials of other types and orientations. 
    more » « less
  2. Hexagonal semiconductors such as GaN and SiC have important power applications at radio and millimeter-wave (mmW) frequencies. They are characterized by both ordinary and extraordinary permittivities, parallel and perpendicular to the densest packed c plane, respectively. However, due to the challenges of high-frequency measurements, little reliable data exist for these permittivities especially at mmW frequencies. Recently, for the first time, we reported the extraordinary permittivity of 4H SiC at mmW frequencies using substrateintegrated waveguides. We now report the ordinary permittivity of the same material using several Fabry-Perot resonators to cover most mmW frequencies. The resulted relative ordinary permittivity of 9.76 ± 0.01 exhibits little dispersion and is significantly lower than the previously reported extraordinary permittivity of 10.2 ± 0.1. This confirms that both ordinary and extraordinary permittivities are needed for accurate design and model of devices fabricated on 4H SiC. By contrast, the measured loss tangent increases linearly from 3  10−5 to 1.6  10−4 from 55 GHz to 330 GHz and can be fitted with (4.9 ± 0.1)  10−16 f, where f is the frequency in Hz. In fact, 4H SiC is the lowest-loss solid we have ever measured. The present approaches for permittivity characterization can be extended to other solids. 
    more » « less
  3. Hexagonal semiconductors such as 4H SiC have important high-frequency, high-power, and high-temperature applications. The applications require accurate knowledge of both ordinary and extraordinary relative permittivities, ε and ε||, perpendicular and parallel, respectively, to the c axis of these semiconductors. However, due to challenges for suitable test setups and precision high-frequency measurements, little reliable data exists for these semiconductors especially at millimeter-wave frequencies. Recently, we reported ε|| of 4H SiC from 110 to 170 GHz. This paper expands on the previous report to include both ε and ε|| of the same material from 55 to 330 GHz, as well as their temperature and humidity dependence enabled by improving the measurement precision to two decimal points. For example, at room temperature, real ε and ε|| are constant at 9.77 ± 0.01 and 10.20 ± 0.05, respectively. By contrast, the ordinary loss tangent increases linearly with the frequency f in the form of (4.9 ± 0.1)  10−16 f. The loss tangent, less than 1  10−4 over most millimeter-wave frequencies, is significantly lower than that of sapphire, our previous low-loss standard. Finally, both ε and ε|| have weak temperature coefficients on the order of 10−4 /°C. The knowledge reported here is especially critical to millimeter-wave applications of 4H SiC, not only for solid-state devices and circuits, but also as windows for high-power vacuum electronics. 
    more » « less
  4. Abstract Bulk acoustic resonators can be fabricated on the same substrate as other components and can operate at various frequencies with high quality factors. Mechanical dynamic metrology of these devices is challenging as the surface information available through laser Doppler vibrometry lacks information about the acoustic energy stored in the bulk of the resonator. Here we report the spin-acoustic control of naturally occurring negatively charged silicon monovacancies in a lateral overtone bulk acoustic resonator that is based on 4H silicon carbide. We show that acoustic driving can be used at room temperature to induce coherent population oscillations. Spin-acoustic resonance is shown to be useful as a frequency-tunable probe of bulk acoustic wave resonances, highlighting the dynamical strain distribution inside a bulk acoustic wave resonator at ambient operating conditions. Our approach could be applied to the characterization of other high-quality-factor microelectromechanical systems and has the potential to be used in mechanically addressable quantum memory. 
    more » « less
  5. As 6G wireless communications push the operation frequency above 110 GHz, it is critical to have low-loss interconnects that can be accurately tested. To this end, D-band (110 GHz to 170 GHz) substrate-integrated waveguides (SIWs) are designed on a 100-μm-thick SiC substrate. The fabricated SIWs are probed on-wafer in a single sweep from 70 kHz to 220 GHz with their input/output transitioned to grounded coplanar waveguides (GCPWs). From CPW-probed scattering parameters, two-tier calibration is used to de-embed the SIW-GCPW transitions and to extract the intrinsic SIW characteristics. In general, the record low loss measured agrees with that obtained from finite-element full-wave electromagnetic simulation. For example, across the D band, the average insertion loss is approximately 0.2 dB/mm, which is several times better than that of coplanar or microstrip transmission lines fabricated on the same substrate. A 3-pole filter exhibits a 1-dB insertion loss at 135 GHz with 20-dB selectivity and 11% bandwidth, which is order-of-magnitude better than typical on-chip filters. These results underscore the potential of using SIWs to interconnect transistors, filters, antennas, and other circuit elements on the same monolithically integrated chip. 
    more » « less