skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Spin-acoustic control of silicon vacancies in 4H silicon carbide
Abstract

Bulk acoustic resonators can be fabricated on the same substrate as other components and can operate at various frequencies with high quality factors. Mechanical dynamic metrology of these devices is challenging as the surface information available through laser Doppler vibrometry lacks information about the acoustic energy stored in the bulk of the resonator. Here we report the spin-acoustic control of naturally occurring negatively charged silicon monovacancies in a lateral overtone bulk acoustic resonator that is based on 4H silicon carbide. We show that acoustic driving can be used at room temperature to induce coherent population oscillations. Spin-acoustic resonance is shown to be useful as a frequency-tunable probe of bulk acoustic wave resonances, highlighting the dynamical strain distribution inside a bulk acoustic wave resonator at ambient operating conditions. Our approach could be applied to the characterization of other high-quality-factor microelectromechanical systems and has the potential to be used in mechanically addressable quantum memory.

 
more » « less
Award ID(s):
1839164
NSF-PAR ID:
10464252
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Electronics
Volume:
6
Issue:
10
ISSN:
2520-1131
Format(s):
Medium: X Size: p. 739-745
Size(s):
p. 739-745
Sponsoring Org:
National Science Foundation
More Like this
  1. Photon-pair generation at telecommunication wavelengths using high-quality silicon microring resonators is an active area of research. Here, we report on significant progress towards the ultimate goal of an integrated silicon microchip for bright generation of photon pairs with multiple stages of tunable optical filtering on the same chip. A high pair generation brightness of 6.5×1010pairs/s/mW2/nm is achieved. The resonance of the high-Q silicon microring resonator can be monitored using a high dynamic range readout of a photocurrent in an all-silicon p-i-n diode fabricated across the waveguide cross-section, which is used to align the ring resonance to the passbands or stopbands of the filters.

     
    more » « less
  2. Abstract

    We explore the prospects and benefits of combining the techniques of cavity optomechanics with efforts to image spins using magnetic resonance force microscopy (MRFM). In particular, we focus on a common mechanical resonator used in cavity optomechanics—high-stress stoichiometric silicon nitride (Si3N4) membranes. We present experimental work with a ‘trampoline’ membrane resonator that has a quality factor above 106and an order of magnitude lower mass than a comparable standard membrane resonators. Such high-stress resonators are on a trajectory to reach 0.1aN/Hzforce sensitivities at MHz frequencies by using techniques such as soft clamping and phononic-crystal control of acoustic radiation in combination with cryogenic cooling. We present a demonstration of force-detected electron spin resonance of an ensemble at room temperature using the trampoline resonators functionalized with a magnetic grain. We discuss prospects for combining such a resonator with an integrated Fabry–Perot cavity readout at cryogenic temperatures, and provide ideas for future impacts of membrane cavity optomechanical devices on MRFM of nuclear spins.

     
    more » « less
  3. Abstract

    An experimentally feasible scheme for preparing the squeezed spin states in a novel spin–mechanical hybrid system is studied. The setup under consideration is realized by a single‐crystal diamond waveguide with negatively charged silicon‐vacancy (SiV) centers embedded. After studying the strain couplings between the SiV spins and the propagating phonon modes, analyses show that long‐range spin–spin interactions can be achieved under large detuning condition. Modeled as an effective one‐axis twisting Hamiltonian, these nonlinear spin–spin couplings can steer the system to the squeezed spin states in the practical situations. This proposal may have interesting applications in high‐precision metrology and quantum information processing.

     
    more » « less
  4. In this work, evidence for acoustoelectric (AE) amplification in lateral-extensional thin-film piezoelectric-on- silicon (TPoS) resonant cavities for the first time is demonstrated. Due to the piezoelectric coupling, an evanescent electromagnetic wave is induced in the silicon (Si) layer that is a part of the resonant cavity, exchanging momentum with the carriers. Therefore, by injecting an electric current in this layer, the acoustic equivalent of Cherenkov radiation – AE amplification – can be realized. Such phenomenon is observed in a 1 GHz TPoS resonant cavity in which lateral field excitation is utilized to excite the acoustic wave. 
    more » « less
  5. Analysis of interdigitated transducers often relies on phenomenological models to approximate device electrical performance. While these approaches prove essential for signal processing applications, phenomenological models provide limited information on the device’s mechanical response and physical characteristics of the generated acoustic field. Finite element method modeling, in comparison, offers a robust platform to study the effects of the full device geometry on critical performance parameters of interdigitated transducer devices. In this study, we fabricate a surface acoustic wave resonator on semi-insulating GaAs [Formula: see text], which consists of an interdigitated transducer and acoustic mirror assembly. The device is subsequently modeled using fem software. A vector network analyzer is used to measure the experimental device scattering response, which compares well with the simulated results. The wave characteristics of the experimental device are measured by contact-mode atomic force microscopy, which validates the simulation’s mechanical response predictions. We further show that a computational parametric analysis can be used to optimize device designs for series resonance frequency, effective coupling coefficient, quality factor, and maximum acoustic surface displacement. 
    more » « less